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INTRODUCTION 

In the design of highway bridges, the static live load is 

multiplied by a factor to compensate for the dynamic effect of 

moving vehicles. This factor, commonly referred to as an im

pact factor, is intended to provide for the dynamic response 

of the bridge to moving loads and suddenly applied forces. 

Many investigators have published research which contradicts 

the current impact formula (1, 4, 17). Some investigators 

feel that the problem of impact deals not only with the in

crease in over-all static live load but that it is an integral 

part of a dynamic load distribution problem (2i|.) « 

The current expanded highway program with the large 

number of bridge structures required emphasizes the need for 

investigating some of the dynamic behavior problems which 

have been generally ignored by highway engineers. These 

problems generally all result from the inability of a designer 

to predict the dynamic response of a bridge structure. Many 

different investigations have been made with the intent of 

studying a particular portion of the overall dynamic problem. 

The results of these varied investigations are inevitably 

followed by a large number of unanswered questions. Ironic

ally, many of the unanswered questions are those which are of 

immediate concern In the design of highway bridges, and this 
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emphasizes the need for additional research on the problem 

of impact. 

Nature of the Investigation 

This investigation is a study of the dynamic magnifica

tion of static load, commonly referred to as impact, resulting 

from the vibrations produced by a vehicle traversing the length 

of the bridge. More specifically, the purpose of this investi

gation is to correlate the response of actual continuous 

highway bridges under the effects of moving vehicles with 

vibration theory. The problem is then to determine by means 

of experimental data, the important parameters affecting 

bridge vibration and thereby to develop a theoretical correla

tion of these parameters. 

Theoretical considerations 

The fundamental problem of vibration consists of the 

determination of the natural modes and frequencies of a given 

vibrating system and the characteristics of the forcing func

tion. Since the natural frequency depends on the restoring 

force and mass of the system, it is evident then that the 

size, stiffness, and initial conditions will determine the 

natural mode of transverse vibratory motion of a beam. The 

vehicle, which causes the forcing function, consists partly of 

sprung mass and partly of unsprung mass. The actual vehicle 
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is a very complicated vibratory system but in this study its 

effect has been simplified as much as possible. Die effect of 

the vehicle which has been assumed to predominate as the 

forcing function for the vibration of bridges is the cyclical 

repetition of the axles. This cyclical repetition is defined 

as the frequency of passage of the axles determined by the 

ratio of the velocity of the vehicle to the axle spacing. 

Experimental cons iterations 

The experimental investigation was designed to determine 

if the simplifications made in the theoretical impact analysis 

are justified in the application of this theory to actual 

structures. In this experimental work the impact was deter

mined at midspan of a single span highway bridge and in the 

outer and inner spans and at the interior supports for three 

types of continuous four span highway bridges. The bridge 

structures investigated are as follows: 

1. A simple span bridge with six postensioned prestressed 

concrete beams 100 ft long constructed to act compositely with 

a reinforced concrete roadway. The roadway is 30 ft wide with 

a 3 ft safety curb on both sides. 

2. A fully continuous structure, 220 ft long with four 

aluminum stringers constructed to act compositely with a re

inforced concrete roadway. The roadway is 3° ft wide with a 3 

ft safety curb on both sides. 

3. A fully continuous composite structure 2i*.0 ft long 
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with four steel wide flange stringers and very similar to the 

previous bridge. The reinforced concrete roadway is 28 ft 

wide with a 3 ft safety curb on both sides. 

if.. A continuous reinforced concrete roadway 2l\. ft wide 

with a 2 ft safety curb on both sides supported by six pre-

tensioned prestressed concrete beams in each of the four 

spans. The ends of the simple span beams were encased by a 

cast in place diaphragm at the piers. The continuous roadway 

slab, constructed to act compositely with the stringers, and 

the pier diaphragm result in a relatively continuous 198,75 ft 

bridge. 

The types of bridges chosen provide a wide range of the 

various parameters involved in vibration. The aluminum 

stringer bridge is outstanding in that it allows a comparison 

of the effect of a lighter material with a smaller elastic 

modulus in a structure similar in its other aspects to the 

steel stringer bridge. The continuous pretensioned pre

stressed concrete bridge resembles the other continuous 

bridges except that it is only partially continuous in its 

action. 

The mass per unit length is nearly equal for the con

tinuous bridges. To investigate the effect of a variation In 

the mass per unit length, the much heavier postensioned pre

stressed concrete bridge was studied. Also these bridges pro

vide a number of variables In their structural qualities which 
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may affect structural damping. This characteristic, the 

damping, is important theoretically since it provides an 

upper limit for the amplitude of forced vibration and might 

determine the maximum amount of impact for that structure. 
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DEFINITIONS AND NOTATION 

Definitions 

Impact factor 

The impact factor used herein, is the ratio of the dif

ference between the dynamic and static effect of a vehicle to 

the static effect. It is therefore the fractional increase in 

the static live load, in this case the vehicle, which is re

quired for the static live load to produce an effect equivalent 

to that of the dynamically applied live load. 

Free vlbrat ion 

Free vibration is that periodic motion which takes place 

when an elastic system moves under the action of no external 

forces or damping. The forces acting on the system during 

Its motion are dependent only on the motion itself. 

Natural frequency 

The frequency of a free vibration is called the natural 

frequency of the elastic system. The elastic system used 

herein is the bridge structure itself. 



www.manaraa.com

7 

loaded natural frequency 

The loaded natural frequency Is the frequency of free 

vibration of a system, In this case the loaded bridge structure, 

When the mass of the loading vehicle ia included in the 

system. This frequency is a function of the position of the 

vehicle. 

Forcing function 

The forcing function is an externally applied time-

dependent disturbance acting on the structure to produce a 

time-dependent motion. 

Forced vibration 

When the vibration results from the application of an 

external time-dependent disturbance it is called a forced 

vibration. 

Modes of vibration 

An elastic system can generally perform vibrations of 

different modes. The mode of vibration is the shape of the 

vibrating beam and is classified by the number of nodes sub

dividing the length of the beam. 



www.manaraa.com

8 

Resonance 

When an elastic system is acted upon by an external 

periodic forcing function having the same frequency as a 

natural frequency of the system, it is in a state of 

resonance. 

Notation 

A,B,C,D,F,H Constants; evaluated by initial conditions 

E Modulus of elasticity 

f Natural frequency in cycles per unit of time 

fjj Loaded natural frequency in cycles per unit of 

time 

f(x,t) A function of position and time 

g Acceleration due to gravity 

I Moment of inertia 

K Frequency parameter, ^/p^m/EI 

EE Kinetic energy 

k Ratio of span stiffnesses, E^I^L^/E^I^L^ 

L Length of span 

M Mass of the load 

m Mass per unit length of span 

N Number of cycles 

n Any whole number 

nb Damping coefficient 
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P Oscillating load effect of a smoothly rolling 

load 

PB Potential energy 

P Natural circular frequency of undamped vibration 

PL Natural circular frequency of undamped vibration 

of the loaded structure 

r Ratio of the horizontal coordinate to the 

length of the span, x/L 

s Spacing of the vehicle axles 

S Stress 

t Time 

T A function of time 

v Velocity 

W Weight of the load 

w Frequency of the forcing function 

x Horizontal coordinate; a distance measured in 

the direction of the length of the span 

X A function of the horizontal coordinate 

y Vertical ordinate; deflected displacement due to 

the static live load 

y^ Vertical ordinate; deflected displacement due to 

the dynamic live load 

^ Phase angle 

p (coth KL - cot KL) 

(cosech KL - cosec KL) 
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HISTORY 

Bridge Vibration 

The problem of bridge vibration came of age when heavy 

loads and high speeds became prevalent in railway transporta

tion. In I8I4.7 a British Royal Committee was appointed to in

quire into the conditions to be observed by engineers in the 

application of iron in structures exposed to violent concus

sions and vibrations. The committee conducted an extensive 

series of laboratory tests at the Portsmouth dockyards (23)• 

A member of the committee, Professor R. Willis, attempted to 

simplify the analytical work by omitting the inertia of the 

bridge and considering only the mass of the moving load. This 

allowed Professor Willis to consider the deflection of the 

beam to be proportional to the force exerted on the beam by 

the moving load. The deflection could then be calculated by 

the equation of static deflection: 

Rx2(L-x)2 

' 3EIL 

Where the force R exerted by the moving load is 

(1) 

R * P - - 2% . (2) 
g dt2 

The equation of the path of the point of contact of the 

rolling load with the beam becomes 
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ya = PU ' f ê) ("sm )̂ * t3> 

An exact solution of this equation was obtained by G. G. 

Stokes (19) by means of a power series. However, an approxi

mate solution can be obtained by substituting the equation of 

static deflection at zero velocity into the right hand side of 

this equation. Accordingly, the dynamic deflection is 

Td * 7 C1 +  ̂3§) (4) 

where the additional tern in the parentheses is the impact 

factor and is usually very small. Therefore the dynamic 

effect in this case is negligible. 

The next theoretical approach was made by considering the 

mass of the bridge and disregarding the mass of the traversing 

load. This was investigated by A. N. Kryloff (12) in 1905 as 

the problem of a constant force traversing a single span beam 

with a constant velocity. In 1922, the problem of a pulsating 

force was investigated by Professor S. P. Timoshenko (21), and 

the same result was later reached by a somewhat different 

method by C. E. Inglis (10). 

The first published solution considering bhe mass of the 

load and the mass of the bridge was by H. 2. Jeffcott in 1929 

(11). The general equation was written 

Kjjk + „âfz , fu,t) . afzl (5) 
dx% dt* g dt* 

where y' is the deflection under the load. An iteration 
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procedure was used to obtain a solution In which it is implied 

that the effect of tho acceleration force is always small 

compared with that of the applied load. The first approxima

tion is found by disregarding the acceleration term and 

solving the equation. The next step is to substitute the 

first solution into the original equation in the previously 

disregarded term and solve the resulting equation. This 

process is shown to converge to the exact solution for a par

ticular case. However, the general convergence of the method 

was not discussed. Since then H. Steuding (18) has shown that 

in some cases the iteration method used by Jeffcott does not 

converge. 

A very comprehensive study was presented by Professor C. 

E. Inglis (10) in 1934 when he published "A Mathematical 

Treatise on the Vibrations in Railway Bridges". This very 

complete study, supported by experiments, considers the 

various types of railway loadings on simple span bridges. The 

traversing load is expressed in the form of a harmonic series. 

The convergence of the series is discussed and it is found that 

only the first two or three components have any real practical 

importance. 

Using the well known differential equation of motion 

(6) 

Professor Inglis uses the forcing function 
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i SCO 

f(x,t) = 17 ^ sln; 
llrvt 1 Tfx 
— sin— (7) 

1 = 1 

for the case of a moving force of constant speed and magni

tude. This function is equivalent to a series of stationary 

but alternating sinusoidal loads. The solution of the dif

ferential equation for this forcing function is 

The solution was also found for the case of a moving alter

nating force and a moving alternating force associated with a 

moving mass. A solution of the type 

was used in all oases. Furthermore a harmonic series was used 

to represent the loads in all the solutions and in some solu

tions only the primary component of the harmonic series was 

considered. These simplifications in the analytical work were 

justified by Inglis (10, p. ix) because "•.• the main object 

of this treatise is the analysis of the oscillations due to 

hammer-blows and the evolution of formulae for computing dyna

mic deflections and the bending-moments and shearing-forces 

induced thereby"* This treatise marks a very important 

1=1 

vL 
and /x « âv" • 

y = f(t) sin~^~ (9) 
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turning point in the engineering approach to the problem of 

impact. 

In 1937» A. Schallenkamp (16) presented a rigorous solu

tion of the problem of bridge vibration considering the mass 

of both beam and load. The lateral vibration produced by the 

external disturbing forces are represented by a series, Which 

for a beam with simply supported ends becomes 

Using the expressions for potential and kinetic energy 

together with the equations of Lagrange, Schallenkamp obtained 

a nonhomogeneous second order linear differential equation in 

terms of q%(t) (1=1,2,..,). The solution of this problem 

seems to indicate that the contribution of the mass is of 

relatively little importance in bridge vibration. 

In 1955# the problem of bridge vibration was studied by 

H. S. Suer (20), who assumed that the bridge, again a simple 

span, could be represented by a single degree of freedom 

system. He therefore considered only the first mode behavior 

of the bridge • In addition, the vehicle was treated as a 

single degree of freedom system. Thus a solution was obtained 

in the form of two simultaneous differential equations in 

terms of the deflection of the bridge and the absolute posi

tion of the sprung mass and their derivatives. These equations 

i=cP 

1=1 
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were then solved by a digital computer. Excellent experi

mental correlation of this solution was obtained by choosing 

the initial position and velocity of the mathematical model of 

the vehicle to agree with the experimental load variation 

curves of the actual vehicle. 

The forced vibration of a continuous two span beam has 

been investigated by G. Ford (5). The load traversing the 

beam was simplified by neglecting its mass. To idealise the 

assumptions made in the analysis, a model was built which had 

negligible damping, complete freedom to rotate at the supports, 

and a uniform cross section. The main purpose of the investi

gation was to determine the number of natural modes which must 

be considered in a theoretical study In order to obtain a fair 

agreement with observed results. The analytical procedures of 

Timosheriko (21) and Schallenkamp (16) were used and the shape 

functions were obtained for the various individual modes of 

vibration. The summation of these components for all possible 

modes was then considered on the basis of superposition, and 

the experimental correlation was made. 

Many experimental studies have been made in attempting to 

correlate the dynamic action of a bridge with theory or to try 

and isolate the most significant parameters in this action. A 

very Important contribution in this respect is the Highway 

Research Board Bulletin 124 • In this bulletin Biggs and Suer 

(1) have reported some of the experimental tests which 
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provided a basis for the analytical work of Suer (20) 

described previously. The significance of the various 

dynamic effects on the vibrations of highway bridges was in

vestigated by Professor C. F. Scheffey (17). Again the 

effect of the smoothly rolling mass was found to be negligible. 

Scheffey (17, p. 29) concluded that "... the effects of the 

oscillating single load was found to become more and more pro

nounced as the frequency of the span approaches the frequency 

of the vehicle", and that "... the superposition of the 

effects of a number of axles in phase is a most difficult 

problem to treat quantitatively on the basis of presently 

available data". A comparison of the measured deflections and 

stresses in two continuous plate girder bridges was reported 

by R. C. Edgerton and G. W. Beecroft (4). This experimental 

investigation concluded that the effect of the roughness of 

the bridge deck, greatly influenced the measured impact. J. 

M. Hayes and J. A. Sbarounls (8) studied the vibration of a 

three span continuous I-beam highway bridge. The effect of 

the load on the natural frequency of the bridge and the 

effect of the composite action of the I-beams are presented in 

this study. The various vehicles used in this experimental 

program had quite a varied axle spacing. The recorded ampli

tude of vibration seemed to correlate very well with this 

parameter. The correlation was made, assuming the bridge to 

have a single degree of freedom, with Impact as a function of 
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the amplification factor normally associated with forced vi

brations. G. M. Poster and L. T. Oehler (6) attempted to 

correlate the dynamic deflection with the stringer depth to 

span ratio for a number of simple span roller-beam and plate-

girder bridges. The damping coefficients of these bridges and 

of a continuous plate girder bridge are presented. A review 

of the analytical and experimental model studies on the high

way bridge impact problem at the University of Illinois was 

presented by T. P. Tung, L. E. Goodman, T. Y. Chen, and N. M. 

Newmark (22). The analytical study was made by a numerical 

step-by-step integration of the equations of motion. The 

study made by Tung e_fc al. includes the effect of the roadway 

unevenness and camber and also the unsprung part of the load. 

The dimensionless parameters which directly influence the 

calculations were reduced by some simplifications to five. 

Weight Parameters : 

Wt. of unsprung part of vehicle 
= Wt. of briage 

Wt. of sprung part of vehicle 
R2 = Wt. of bridge 

Wt. of vehicle 
R = Wt. of bridge 

Stiffness Parameter 

Natural frequency of vehicle 
(° Natural frequency of bridge 
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Speed Parameter 

Velocity of vehicle 
a e 2(Length of span)(Natural frequency of bridge) 

A good correlation was made of the model study results of a 

single axle vehicle traversing a single span bridge with the 

analytical solution obtained by a digital computer, A. 

Hlllerborg (9) has shown that using only two of the five 

dlmenslonless parameters considered by Tung et al. the third 

weight parameter R and the speed parameter a, the impact of an 

Idealized unsprung single concentrated mass can be predicted 

by method of Inglis (10). The theoretical dynamic increment 

or impact is shown for both moment and deflection, but the 

experimental correlation is shown only for moment. 

It is interesting to note that of the many facets to the 

problem of bridge vibration, the damping constant of the 

bridge is nearly always neglected in the simplifications of 

the analytical solutions. This is done even though the effect 

of damping will limit the maximum amplitude of stress or im

pact when the resonance condition is obtained between the 

forcing function and the structure. For a continuous bridge 

this resonance condition might be obtainable by a single un

sprung mass traveling at a speed in which the application of 

the load in each span corresponds to the natural frequency of 

the structure. A condition of resonance is certain to occur 

when the mass is mounted on springs. This may not occur often 
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in practice because of the difference in natural frequencies, 

but the situation should not be overlooked. A condition of 

resonance is also obtainable when the frequency of passage of 

the axles of a vehicle correspond to the resonant vibratory 

motion of the structure. This problem does not readily lend 

itself to analysis by the often used Inglis (10) method for 

moving loads of constant magnitude, and yet the problem is 

not one of a moving alternating load. This is the problem for 

which a theoretical analysis has been derived in this investi

gation and correlated with experimental results. 

In 18^9 August Wohler began a now celebrated series of 

tests in which steel and iron specimens were subjected to 

alternating or varying stresses. It was found that failure 

occurred at a much lower stress than would have been observed 

for a static test. This emphasizes the problems inherent in 

dynamic loading. These results started the subject of the 

fatigue of metals. The first of the fatigue stress formulas 

was devised to fit the experimental data of Wohler, This rule 

was given by the formula (7) 

where Se = endurance limit and Sy = static ultimate stress of 

Impact Factors 

Minimum stress in member 
Maximum stress in member 

(11) 
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the material. The endurance limit was considered as the 

maximum tensile stress for which the material could resist an 

Indefinite number of repetitions. The results of Wohler's 

tests were used by bridge engineers to fomulate the 

allowable stresses in members subjected to varying stresses. 

The resulting formulas were Intended to reduce the allowable 

stresses to account for the effect of fatigue. The actual 

formulas used were derived from this rule by substituting a 

value for Se and Su and incorporating a suitable factor of 

safety. The formula was intended to reduce the allowable 

working stress as the stress range over which the material is 

worked increases. Thus the important part of this type of 

formula is the controlling variable which is the ratio of the 

live load stress to dead load stress. Because the reduction 

of stress using this type of formula involves a trial-and-

error procedure in the design of members, a simplification was 

evolved which applies the controlling variable to the loadings. 

Therefore instead of reducing the stress to account for the 

effect of fatigue, the loading was increased. This was done 

by first simplifying the controlling effect as a percentage 

based on a ratio of live load stress to the live load plus 

dead load stress, or 

where 3^ is the live load stress and SD is the dead load 
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stress. This can be rewritten as 

1 
1 + VSL 

where the ratio S@/S^ is considered a function of the length 

for similar types of structures. This formula, with a value 

of L/300 for the function of length, was introduced in I89I4. 

and was very widely used in the United States, Canada, Great 

Britain, and India to Increase the static load and therefore 

to account for the fatigue effect of the variation of stress 

due to repeated loads. The repeated load provision has since 

become accepted as a method of providing for live load impact 

and is called an impact factor. This error in terminology has 

resulted in abuse and confusion by engineers of a rule in

tended as a precaution against fatigue failures. In this in

vestigation, the impact factor refers only to the effect of 

the load and is specifically a function of the amplitude of 

forced vibration of the bridge. 
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THEORETICAL INVESTIGATION 

Free Vibration 

General theory 

One Important parameter in the response of an elastic 

system to the action of a forcing function is the ratio of the 

frequency of the forcing function to the natural frequency of 

free vibration of the system. Therefore, in this study of the 

forced vibration of highway bridges, the natural frequencies 

and their corresponding modes of vibration will be considered 

first. 

The differential equation governing the free vibration of 

a beam of constant E, I, and m is found by using the elementary 

theory of mechanics. This equation Is 

where the force in this case results from the inertlal forces 

and is a function of both x and t. Then, using d'AlemberVs 

principle for the loading 

Combining these results, the differential equation of motion 

for the lateral vibration of a beam becomes 

« -force per unit length (12) 

(13) force per unit length 
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EI + m ^ % * 0 (14) 
dt2 

which must be satisfied at all points along the beam* The 

solution of this partial differential equation may be assumed 

to be of the form 

y = X(x)T(t). (15) 

Then Equation llj. can be written as 

M ̂  . -14 . ut,) 
mX d%4 T dt 

Since X is only a function of the position and T is only a 

function of time, the left hand side of Equation 16 can be 

equal to the rig&t hand side if and only if they are both 

equal to the same constant• In order for T to be harmonic, 

the constant must be positive, say +p2. Therefore the 

ordinary differential equations in X and T are 

~ ~ K^X x 0 (17) 
dx4" 

+ p2T e 0 (18) 
dt ,— 

/_2 
where the frequency parameter K * ̂  . The natural fre

quency of vibration in cycles per unit of time is obtained by 
2 /gT 

dividing the natural circular frequency p « K /—by two pi. 

In terms of the frequency parameter K, the natural frequency 

is 
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The value of K is found in the solution of the shape function 

X which in turn is dependent upon the conditions on the span. 

The general solutions of Equations 17 and 18 are of the 

form 

X = F a in Kx + C cos Kx + H sinh Kx + D cosh Kx (20) 

T = A sin pt + B cos pt (21) 

where C, D, F, H are constants to be determined by the geo

metrical boundary conditions and A and B are constants to be 

determined by the initial conditions. 

Continuous beams with constant E, I, and m 

The method used here in the general theory of the lateral 

vibration of continuous beams is an extension of the original 

work of E. R. Darnley (2) on the vibration of rotating shafts. 

The determination of the natural frequency of multi-span 

beams is found by using Equations 20 and 21 with the conditions 

at the ends and at the supported intermediate points. The 

conditions on X result in a shape function for each span and 

the conditions of time result in a time function T which is 

the same for all spans. The conditions at the ends and at the 

intermediate supports of the continuous beams are the following: 

1. At the simply supported end, the deflection and the 
2 

bending moment ars zero; y = 0, and EI^—= 0. 
dxd 

2. At an intermediate support the deflection is zero, and 

the slope and the bending moment are continuous; y = 0, and 

and EI^-2 are continuous. 
dx 
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Taking the origin of coordinates at the left end of each 

span, the general equation giving the value of the shape func

tion for the n**1 span, considering the deflection at the left 

end equal to sero, will be of the form 

XQ = Cn(cos - cosh EXJJ) + EySin K%% + H^sinh Kxn. (22) 

The equations expressing the end condition of a sero deflec

tion and the continuity conditions of slope and moment at the 

interior supports are respectively, 

On(cos KI^ - cosh KI^) + Pnsin KLq + H^sinh KL^ = 0 

-C?n( sin KLq + sinh KLn) + Pncos KLn + H^cosh KL^ 

= Pn+1 + Hn+1 

Cn(eos KLQ + cosh KL%) + F^sin KL^ - E^sinh KLn 

= 2Cn+l • 

Adding Equations 23 and 25 results in 

Cncos KLN + Fnsin KLQ = Cn+1 

and subtracting these equations results in 

Cncosh KI^ - H^sinh KI^ = 0^+^ . 

Subtracting Equation 26 from Equation 27 and dividing by the 

coefficients of Fn and yields 

Fn + HJJ b Cn(coth KL^ - cot KI^) - Cn+1(cosech KL^ 

- cosec KLQ) (20) 

This operation assumes that sinh KL and sin KL are not zero. 

This is important in applying the following results, because 

the fundamental frequency of a simple span or a continuous 

beam of equal span length is KL as TP, in which case sin KL is 

(23) 

i2k) 

(25) 

(26) 

(27) 
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zero. 

Using the notation: 

coth Klfc - cot KLn = (29) 

cosech KLJJ - cosec KL^ = (30) 

the following equation is obtained: 

pn + Hn = Cn - On+1 . (31) 

In a similar manner, the equation for the next intermediate 

support can be written: 

pn+l + Bn+1 = °n+l ̂n+1 " Cn+2^n+1 " ^2) 

Combining Equation 32 and Equations 26 and 27 in terms of Fn 

and respectively, yields : 

Cn+1 " Cncos 
-Cn(sin KI^ + sinh KI^) + gin ̂  cos KLr 

• "• -» • <u 

~ °n+2 ̂n+1 * (33) 

Using the notation given in Equations 29 and 30 and simpli

fying gives the general solution for the differential equation 

of the shape function for the n+1 interior support. This 

equation can be written as 

cn tu' <W k + Cl> + Gn+2^1 = 0 (3W 

for each intermediate support, thus giving a system of equa

tions for a continuous beam of n spans. The frequency equa

tion may be found, as shown below, by forming a determinant of 

the coefficients. 



www.manaraa.com

27 

Three span bridge. The determinant in the case of a 

simply supported three span continuous bridge is given below 

and evaluated 

For the case of equal end spans, this reduces to 

fl + ^2 " " ^2 * t36) 
The first root of this transcendental equation was determined 

for various ratios of lengths and the results are shown in 

Figure 1. The curves shown in this figure can be used to find 

the value of K, the frequency parameter, for determining the 

first mode of natural frequency for a three span structure 

with equal end spans. Caution should be used, however, be

cause extrapolation beyond the limits of the graph could be 

erroneous. Further, it should be pointed out that the rela

tionship expressed in the figure is not linear as some writers 

seem to indicate (lf>). Moreover, if the ratio of Iq/Lg be

comes less than 0.5» that is, if the middle span length ex

ceeds twice the outer span length, the possibility of this 

mode of vibration occurring decreases, and instead a higher 

mode with a nodal point at the middle of the center span 

probably would occur. 
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Four span bridges. The continuous bridges studied experi

mentally have four spans. The application of this theory to 

four span bridges will be studied for application later to the 

experimental data. The determinant in the case of a four span 

bridge is given below and evaluated. 

4 % 
% h* i % 

0 t V i 
« 141 + 4Z + 9^>t ^ + 4k) * 4X * dg} + 

/"2l ^3 + ^ = 0 • 137) 

Once again considering a symmetrical structure in which the 

span lengths are simplified by and Lg = as generally 

used to help optimize the distribution of bending moments in 

highway bridges, the frequency equation degenerates to 

+ ^2 = 0 (38) 

and 

( ̂  + 4Z) lz - f\ = 0 . (39) 

Equation 38 represents a mode of vibration of a four span 

bridge which is antisymmetrleal about the center support and 

the roots of this equation give the odd modes of vibration of 

the structure. Equation 39 represents a node of vibration of 

a four span bridge which is symmetrical about the center support 

and the roots of this equation give the even modes of vibration 
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of the structure. In general, for an interior span of a con

tinuous bridge, the odd modes correspond to the modes of vi

bration of a simply supported beam, and the even modes 

correspond to the modes of vibration of a fixed end beam. For 

the end spans of the continuous beam, the odd modes are as 

before but the even modes of vibration correspond to the modes 

of vibration of a beam with one end fixed and the other end 

simply supported. The first root of Equation 38 has been 

determined for various ratios of lengths and the results are 

shown in Figure 2. By means of this figure the value of KL 

and hence the first mode of natural frequency can be obtained 

for any ratio of lengths, within the limits of the curve. 

The roots of the frequency equations are obtained in the 

form of KL, where L is the span length. For the general case, 

as in Figures 1 and 2 which consider only span ratios, it is 

more convenient to determine the natural frequency by 

where KL is a root of a frequency equation. The value of KL 

can be obtained from Figure 1 or Figure 2, depending on the 

number of spans in the structure. The two curves shown in 

each figure give identical values of K since each value must 

be divided by the respective length L. An observation can be 

made here using the first mode of natural frequency curves in 

Figures 1 and 2. It is interesting to note that reducing the 
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ratio of lengths has the effect of reducing the value of K If 

the sum of the lengths remains the same. Thus It is seen that 

for any given total length, considering B, I, and m constant, 

the more irregular the span lengths become, the lower the 

natural frequency of the structure becomes. 

Continuous beams with variable E, I, and m 

The previous analytical work has been carried out under 

the assumption that E, I, and m are constant throughout the 

length of the bridge. However, this may not be true. In the 

usual continuous highway bridge structure the section of the 

longitudinal stringers is increased by the composite action at 

the middle of the spans and by the cover plates at the interior 

supports. In this type of highway bridge the moment of inertia 

of the stringers and cover plates at the interior supports is 

approximately the same as the moment of inertia of the com

posite slab and stringer at the middle of the spans. This 

leads to an often used simplified analysis of live load effects 

which assumes that the moment of inertia is constant throughout 

the length of the bridge. This assumption has been shown to be 

incorrect for the few continuous highway bridge structures 

comprehensively studied experimentally (15). Moreover, the 

variation in the moment of inertia is dependent upon the un

known amount of composite action exhibited by the slab and 

stringer. For this reason, variations in the moment of inertia 



www.manaraa.com

33 

along the length of the bridge, due primarily to cover plates 

at the interior supports, will be disregarded and the moment 

of inertia at the center of the spans will be used in the 

analytical work. This simplification has some merit because 

of the way in which the inertlal forces and the fundamental 

mode of vibration occur. 

In the lateral vibration of a beam, the largest inertia 

forces will occur near the center of the span. Moreover, when 

the continuous bridge is vibrating at its first mode of vibra

tion it has a point of counterflexure at or near the supports. 

Thus the effect of the difference in the moment of inertia, 

as a measure of the stiffness, at or near the supports would 

have a very slight effect on the restoring force of the bridge. 

Thus the variations in the moments of inertia near the sup

ports will have a minor effect on the first mode of vibration. 

The above discussion concerns the variation in the moment 

of inertia in any particular span. If, however, the variation 

from span to span occurs due to a changing slab thickness or 

changing stringer size, the restoring force in each span might 

be very much affected. This problem usually occurs due to an 

abrupt change in the rolled section at a splice or an abrupt 

change in the size of flange of a built-up plate girder. 

This problem will be studied analytically by assuming a 

constant but different moment of inertia and mass per unit 

length in each span. The mathematical model will be set up 
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with the origins at each end and at the center of a symmetrical 

four span bridge. The problem reduces to the solution of 

Equation 20 for each span and Equation 21 for the entire 

structure. The value of p which yields the natural frequency 

will be the same for both spans, however the parameter K will 

differ for each span. Therefore, the frequency parameters are 

written 

4 • & 
and 2 

iè = !!êL . (W 
e2i2 

The general solutions of the shape function equations for each 

span are 

= F^sin K]%1 + G-^cos K^x-^ + H^sinh K^x^ 

+ D^cosh KjX^ (43) 

%2 = 5*2 3 K2 X2 +  G2 c o s  K2 x2 +  H^sinh K^Xg 

+ D^cosh K2x2 (44) 

Applying the conditions that the ordinate is zero at the 

origins, Equations 43 and 44 give 

X, = ci sin LL 3ln K1X1 - (45) 
sin KXLX sinh KXLX 

X2 = o' 3in K-L 3ln K2*2 - 3lPh ̂  (46) 
* ^ ̂  sin K2L2 sinh K2L2 

The continuity conditions of bending moment and slope are, 
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2 2 
=  ® 2 I 2  — a n d  s  .  A p p l y i n g  t h e  e q u a l i t y  

2 dxi dx; L1 —2 
of bending moments gives 

sin sinh. 

dxn 

sin K-L-
11 

sinh 

Eglg^g^sin KgLg sin K2L2 4. sinh Kg^2 

sin KgLg sinh KgLg 

or 

ElIlKlGlsin KiLi e E2I2K2G2sin K2L2* (47) 

Then equating the slopes and substituting for C2 from Equation 

47 yields the equation 

cos K-j^L^ cosh K^L^ s -E^I^K-^ cos Kgl^ cosh K2^2 

sin K^L^ sinh K^L^ %V2 sin KgLg sinh KgLg 
(48) 

By reducing and using the previous notation in Equations 29 

and 30, this equation becomes very similar to the previous 

frequency equation for a symmetrical four span bridge» This 

equation becomes 

=. Wi 

B2I2K2 
i. (49) 

Substituting the value of K^ and Kg from Equations 41 and 

42 into Equation 49# yields 

« «B 'vil 
E?i2 

i. (5o) 

If the span stiffnesses and masses per unit length are the 

same, the factor 
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reduces to unity and this equation becomes exactly like the 

previous frequency Equation 38. 

It is seen therefore that the frequency equation derived, 

which includes the effect of a constant but different E, I, 

and m in adjacent spans, is applicable only to the odd modes 

of vibration. This, of course, Includes the most Important 

which is the first mode. 

Since relatively small differences in the mass per unit 

length of adjacent spans are usually found in practice and be

cause the mass ratio only affects the factor by the fourth 

root, this effect will probably be very small. Thus the mass 

ratio was taken as unity and the effect on the natural fre

quency of the different stiffness ratios, of the outer and 

inner spans of a symmetrical four span bridge, was obtained. 

The effect is shown in Figure 3 by plotting the frequency 

parameter against the ratio of stiffness. 

Live load effect on natural frequency 

The natural frequency of vibration varies as the position 

of the mass of the live load changes in each span. The effect 

of adding this concentrated mass is a reduction in the natural 

frequency of the structure by an amount depending on the 

(5D 
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position of the mass. This change in natural frequency will 

cause a variation in the coincidence of the frequency of the 

forcing function and the frequency of the bridge. 

It is important, therefore, to study this change in fre

quency by a procedure in which the effect of the position of 

the vehicle can be easily determined. A method well adapted 

to this type of study is the energy method. This method is 

based on the law of conservation of energy which requires 

that, provided damping is negligible, the sum of the kinetic 

energy EE and the potential energy PE must be a constant. 

Thus 

KE + PS = constant. (52) 

Because of the periodicity of vibratory motion, the displace

ment will be a maximum when the velocity is zero and the dis

placement will be zero when the velocity is a maximum. Since 

the sum of the energies is a constant, Equation 52 can be 

written 

KB = PE . (53) 
•nmax —max 

In a flexural vibratory system with simple harmonic motion the 

maximum potential energy of the system is given by 

a** - I [ BI (6) t5ti 

and the maximum kinetic energy of the system is given by 

KB « 1 p2 f m (X)2dx (55) 
-Hex 2 J 
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where the simple harmonic motion is defined by 

y = X sin(pt - (X). (£6) 

By equating the maximum kinetic and potential energies, the 

resulting energy equation for the natural frequency is 

When the vibratory system consists of a number of spans# the 

kinetic and potential energies are determined for the entire 

structure. The resulting energy equation for the natural 

frequency of vibration becomes 

where the subscript denotes the span for ràiich the function 

applies. 

The application of this relationship is made by assuming 

a configuration of the vibratory system. This configuration 

is then used to determine the kinetic energy and potential 

energy of the system and therefore to find the natural fre

quency of vibration. 

The solution obtained by this method will always be 

higher than the exact solution. That is, as the assumed shape 

of the vibratory deflection curve approaches the actual shape 
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of the vibratory deflection curve, the value of the natural 

frequency will decrease as it approaches the exact value. For 

this reason the energy solution is called an upper bound 

solution. 

The approximate shape of the vibratory deflection curve 

is often assumed to be the same as the dead load deflection 

curve. The application of this assumption to an indeterminate 

structure might be erroneous. This would result because the 

static effect of the dead load of a continuous beam causes a 

downward deflection in all the spans. However, in the case of 

a vibratory motion, alternating deflections of the spans will 

occur for the fundamental mode of vibration. If the live load 

deflection curve is used, instead of the dead load curve, the 

curve becomes different for each position of the load. This 

complicates the analysis and does not increase the accuracy of 

the solution since the effect of the mass of the beams has 

been omitted. To overcome the lack of a known vibratory de

flection curve, an arbitrary polynomial solution could be used 

with the degree of the polynomial depending upon the conditions 

available for the determination of the constants. This pro

cedure has been applied by T. Poschl (llf.) to the vibration of 

symmetrical single span rigid frames. The work of Poschl can 

also be extended for the effect of a concentrated mass at the 

center of a symmetrical three span continuous beam. 

Using a similar procedure for the case of a symmetrical 
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four span continuous structure, the general polynomial deflec

tion curves, in terms of the shape function X, assumed for the 

outer and inner spans are respectively, 

X1 = L^A + Br + Or2 + Dr3 + Frb (59) 

Xg = I^(A! + B*r + c'r^ + D r3) (60) 

where r is taken as the dimensionless ratio for the 

first span and x^/L^ for the second span. Then the following 

conditions are used for the evaluation of the constants. The 

notation y^(l) is the deflection in the first span at r = 1 

and a prime indicates a derivative with respect to x. 

Deflection conditions : 

yi(0)=0 y%(l)=0 yg(0)=0 y2(l)=0 y2(2)=0 

Continuity conditions: 

yl(l)=y2(°) El^y'] ' ll)=EI2y^ (0) EI^' (0)=0 

Symmetry conditions: 

y2(0) = yg(2). 

These conditions will restrict the vibratory deflection curve 

to an alternating movement in adjacent spans which is anti-

symmetrical about the center of the structure. The symmetry 

condition imposed on the interior span could have been 

EI2y2'(l) = 0 

and a similar result would have been obtained. 

The application of the end conditions to the polynomial 

for the first span yields the following equations 
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y-j^O) =0 A = 0 

El-jy-J^O) =0 0 = 0 

y%(l) = 0 B + D + E = 0 

Applying the conditions on the polynomial assumed for the 

second span gives 

y2(0) = 0 A1 = 0 

y2(l) =0 B1 + C1 + D* = 0 

y2(2) =0 2B1 + 4Cl + 8D1 =0 

The continuity conditions give the following 

y^(l) = y2(0) B + 3D + 4E = B1 

y2(0) = y2(2) 4C1 + 12D* = 0 

E1I17Î,(1) = E2I2y2,(0) 3D + 6E - kc' = 0 

where 

k = BgI2Ll . 

All the coefficients were found in terms of D1. The 

resulting vibratory deflection equations have the arbitrary 

amplitude constant D* taken as unity. These equations are 

|^-(2+k)r + (i}.+3k)r3 - (2k+2)r^J 

X0 = Lr [_2r - 3r2 + r5 

(61) 

(62) 

Substituting these equations and their derivatives into the 

energy frequency equations yields 
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p2 = 7560 5^2 
Eglg HEc^ + 1*2 + 0.6k) s= 1 (63) 
®2*5 "i1^ 

(124 + 95k + 19k2) + 48 

The natural frequency can be obtained by dividing the natural 

circular frequency p, from Equation 63, by two pi. In this 

operation only the energy of the structure was considered, 

therefore the solution should approach the natural frequency 

with no live load. Comparing the values of natural frequency 

obtained from Equation 63» for different ratios of lengths, 

with those of the exact method (Figure 4) suggests that a 

better assumption for the deflection curve might be made. 

Obtaining a better polynomial solution is doubtful because the 

elimination of the coefficients is dependent upon the number 

of conditions imposed on the vibratory structure, and a 

minimum number of conditions were used on the previous poly

nomials. If a higher polynomial is used, the greater number 

of conditions required for- the determination of the coeffi

cients would, in general, restrict the deflection curve even 

more thus Increasing the error in the solution. For this 

reason a different type of dynamic deflection curve might not 

only improve the accuracy of the natural frequency but also 

provide an insight into some types of forced vibration analysis 

which require assumptions as to the shape of the deflection 

curve. The second deflection curve chosen for this case is a 
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sine function. The equations are 

= A sin n^x^ (64) 

X2 = B sin ngXg (65) 

Taking the origins of coordinates at the left hand end of each 

beam, the constants are evaluated using the following 

conditions. 

Deflection conditions : 

7^(0) = 0 y2(0) = 0 7^(1^) = 0 y2(L2) = 0 

Continuity conditions : 

yî(Ll' = y2<0j ElIl7i'(Ll) = B2I272'(0) 

The application of these conditions yields the following 

equations $ 

7l(H) =0 nx = 

y2(L2) = 0 n2 = 

y^(i^) — y2( o) A ~ "(Lj/iig) B • 

Using these results the vibratory deflection equations with 

the amplitude constant B taken as unity become 

X1 - -<W sin 4^ t66) 

Xg « sin IJS # (67) 

Substituting these results obtained from an assumed sine curve 

and their derivatives into the energy equation gives 
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We 

E2I2Ll 

li V ^1 
m. 

(68) 

> 2 / "2 

from which the natural frequency can be found as previously 

noted. A comparison of the natural frequency as determined by 

the exact solution and by both energy methods, the polynomial 

solution and the sine function, are shorn in Figure 4 for 

various ratios of lengths but constant stiffness and mass. 

A comparison of the effect of the variation in stiffness 

from span to span as determined by the exact equation and by 

two energy equations is shown in Figure £. The ratio of mass 

was taken as unity. 

It has been found that the deflection curves derived from 

the sine function give good results for the unloaded natural 

frequency when the ratio of lengths becomes irregular. The 

sine curves also have a tendency to yield an even better 

answer when the stiffness of the longer span increases in 

proportion to the stiffness of the smaller span for the more 

irregular lengths. This correlation indicates that the assumed 

sine curve should give better results than the polynomial 

curve when the live load is placed on the span. This is 

especially true if the mass of the live load is small with 

respect to the mass of the bridge. In the usual highway bridge 

this is often the case as shown by the bridges tested in this 
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study. 

The effect of the live load mass is easily accounted for 

in the energy frequency equation. The equation was found by 

equating the maximum potential energy to the maximum kinetic 

energy. The maximum potential energy is a function only of 

the deflection curve and therefore the additional live load 

mass does not change the numerator of the equation. The maxi

mum kinetic energy, however, will change considerably as the 

maximum velocity of the live load mass changes. The velocity 

of this mass depends on the position of the mass in the span 

and on the deflection curve. Thus, for any one deflection 

curve the denominator of the frequency equation will change, 

for the addition of live load, by the term 

where y is the deflection under mass M. The frequency solu

tion for the structure including live load mass then has the 

general form 

where the subscript denotes the span for which the function 

applies and X is a function of the position of the mass M. 

Using the vibratory deflection curves obtained from the 

sine functions, the frequency equations for the mass of the 

o 

(69) 
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load in the outer and inner spans respectively of a symmetrical 

four span bridge are 

PL. 

VA 

mg 
s i  + 1  +  (  i a  M 

B2L2 
sin 2 TTxi 

(70) 

and 

* • # 
VA 
VA 

flY + 1 + —sin2 7TX2 
m2 \ ̂2 / ™2^ % 

(71) 

It is interesting to note that the form of the energy 

frequency equation suggests that the effect of a number of 

live load masses at different positions on the structure can 

be superimposed by adding the inverse square of the circular 

frequency of each 

(72) 
P2 P3 PÇ 

where p^ is the circular frequency of the n^ load. This 

procedure has a limitation in its accuracy due to the original 

assumption that the dynamic deflection curve does not change 

due to the live load. Thus there is an increase in error as 

the amount of live load increases. 

The reduction in natural frequency for use in the corre

lation of the experimental data was determined by first 
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computing the ratio of the loaded frequency to the unloaded 

natural frequency using the energy frequency Equations 68, 70, 

and 71. This yields the equation 

for the mass of the load in the outer span of a four span 

continuous highway bridge in which the outer and inner spans 

are equal respectively, that is, and L^ = L^. This 

also yields the equation 

for the mass of the load in the inner span of the same 

symmetrical four span continuous highway bridge. The ratio 

thus found was then applied to the theoretical natural fre

quency as determined by the exact solution previously de

rived. The results of this procedure make the best use of 

the two methods of vibration analysis presented herein. 

In the case of the simple span the substitution of an 

assumed sine deflection curve into the energy frequency 

equation and the subsequent ratio of the reduction in the 

£L _ PL 
f " P 

(73) 

££ = 2£ 
f p 
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natural fraquoncy is used by Inglls (10) and has the form 

Equations 73 and 7It- were used to determine the change in 

the natural frequency of continuous bridges with different 

span ratios for various positions of the live load mass and 

this reduction in frequency is shown in Figure 6. The mass 

ratio shown is the ratio of live load mass to the dead load 

mass of the entire inner span. 

Assumptions and discussion 

The analytical solution of the equations of motion for 

the forced vibration of an elastic system is dependent on the 

type of forcing function causing the motion. The assumptions 

made concerning the type of forcing function representing a 

moving vehicle on a highway bridge generally result in the use 

of a moving force or mass freely mounted on springs or 

harmonically oscillating as it traverses the bridge. Usually 

a single load with one degree of freedom is used when the 

force or mass is spring mounted. A more complicated loading 

assumption is made by considering both the sprung mass, made 

up of the vehicle body, and the unsprung mass of the axles and 

springs. 

(75) 

Forced Vibration 
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An actual vehicle is a complex system made up of a 

chassis suspended on springs and connected to either the front 

or rear axles, which are mounted on balloon tires. The com

pressibility of the balloon tires might allow the axles to be 

considered as sprung masses also. Thus a vehicle can be con

sidered as three separate masses, each with six degrees of 

freedom. This system could be simplified by using only the 

most important motions, but the primary quantities governing 

the simplest of motions can vary considerably from vehicle to 

vehicle. Some investigators have shown (15) that the random 

vibration of the vehicle often coincides with the harmonic vi

bration of the bridges, even though this vibration is not a 

resonant frequency of the vehicle. Other researchers (17) 

indicate that the force required to initiate springing action 

in the vehicle is great enough that only the springing of the 

tires needs to be considered over most of the span. A very 

complete analytical study has been made (13) using a computer 

for a step-by-step solution of the equations of motion for a 

series of smoothly rolling loads on simple spans. This re

search added a great deal of qualitative data for interpreting 

the effect of the various parameters on bridge vibration. It 

was found that at certain speeds the effect of the individual 

axles would accumulate and at other speeds would interfere 

with each other, thus varying considerably the Impact caused 

by the group of axles. These results mark a significant change 
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in the concept of highway bridge impact. A very significant 

change, however, is in the assumptions required for the 

analytical solution of this problem. The solutions of Inglis 

(10), for example, which found the effect of the smoothly 

rolling forces and masses to be insignificantly small, con

sidered the loading as a sine series in which usually only the 

first term is used. It would be difficult to study the effect 

of two relatively closely spaced axle loads when each load is 

represented mathematically by a sine curve extended over the 

length of the span. Thus the primary problem in this analytical 

study is the determination of a forcing function xjhich will 

form a series of impulses representing the repetitive action 

of a series of axles rolling across a bridge. The two sig

nificant parameters of this forcing function are the magnitude 

and the frequency of the forcing function. The magnitude of 

the forcing function is assured herein to be a function of the 

oscillation in the structure resulting from the response of 

the structure to a smoothly rolling load of constant magnitude. 

The frequency of the forcing function is assumed to be the 

frequency of repetition of the axles of a vehicle traversing 

the bridge. 

The analytical work of Inglis, although it does not touch 

on this problem, does offer a great deal of insight into a 

solution. 
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General theory 

Inglis incorporates the use of a Fourier sine series for 

the representation of the various loadings. A concentrated 

load W at section x=a, is expressed in the form 

i= CP 

f Sin4^ sin^p (76) 

1=1 

The deflection resulting from this load function provides a 

basis for some simplification of this load function. The 

static deflection can be determined by using elementary 

mechanics. The deflection curve must satisfy the relationship 

i= CO 

E I S  =  f  s l n i r  s i n i r *  ( 7 7 >  
1=1 

When the load is near the center of a simple span, the static 

center line deflection is obtained, approximately, by using 

only the first harmonic component of the load series. The 

resulting static deflection is 

Therefore, by using only the first harmonic component of the 

load, a very close approximation to the exact values of 

WI/V48EÏ is obtained. Thus, only the first harmonic component 
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was used by Inglis for most of the solution. 

The above calculation for deflection was made with the 

assumption that the elastic curve of the beam is free to ro

tate at the support, which is the elastic curve of a simply 

supported beam. The exactness of this solution for deflection 

is a result of the small difference between the simple beam 

deflection curve for a concentrated load, and the deflection 

resulting from the first component of the harmonic representa

tion of load, a sine curve. Thus, the type of solution which 

results in a sine deflection curve is applicable to a simply 

supported beam, but it requires some justification before it 

is applied to a continuous beam. However, to do this it is 

only necessary to consider the computations for natural fre

quency by the energy method. It has been shown in Figure 5 

that the assumed sine deflection curve yields a very good 

approximation in determining the first mode natural frequency. 

This indicates the closeness of the sine curve to the exact 

theoretical first mode of vibration curve of a continuous 

beam. In addition, the reduction in natural frequency re

sulting from the mass of the loading vehicle on the bridge, 

Figure 6, seems to agree with the experimental reduction. 

Therefore, the type of first mode does not change appreciably 

due to the live load mass. Therefore, in the analysis of the 

forced vibration, the shape function X will be represented by 

a sinusoidal curve. The solution of the partial differential 
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equations of motion may then be taken as 

y = T(t) sin . (79) 

To represent a moving load, the distance that the load 

travels is taken as vt, where v is the velocity of the load 

and t is the time required for the load to traverse the 

distance a. The series representing the moving load of 

constant magnitude then takes the form 

i= cP 

^ .1»^ (80) 

i=l 

A more revealing form of this series can be made by making 

the substitution % = ̂  , resulting in 

1= CO 

sin i27T*t sin . (81) 

i=l 

This form of the series indicates that the effect of a moving 

concentrated load is equivalent to a series of stationary but 

alternating loads whose forcing frequency is z. 

Moving loads of constant magnitude 

The oscillations produced in a beam by a moving load of 

constant magnitude is found by solving the differential equa

tion of motion, Equation 6, with the proper forcing function 
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Equation 7 or 8l. The solution of this problem by Inglis (10, 

p. 27) is shown in Equation 8. Using only the primary com

ponent of the load function, this equation becomes 

2WL-3 
7d ~ TY^EI 

sin ]]-£. / v 
9 n 2 (aln 27Tzt -(-sin 2^Tft) 

L1 -(W 2Lf 

(82) 

Due to the practical limitations of speed, the term , in 

the denominator, is negligible in comparison with unity and 

can be ignored. Therefore this motion can be written 

2WL3 

7d " TT^EI 
sin sin 2Trzt - sin 2"TTft sin 

(83) 

Using the first term in the parenthesis with z replaced by its 

value of v/2L and the distance vt taken as 1/2, the static de

flection is obtained. Thus the second term is the amplitude 

of oscillation of the beam which is superimposed on the static 

deflection curve, and can be written 

f—̂ ~) Sin 27rft sin (8I4.) 
7TT3I \2Lf / L 

The maximum percentage variation or oscillation in the beam 

deflection is therefore 

— (100) = (100) (85) 
y 2Lf 

The right hand side of Equation 85 is equivalent to a per

centage variation in a stationary load W of 

f(100) (86) 



www.manaraa.com

59 

The use of this equivalence allows the repetitive motion of a 

series of axles to be represented by a stationary load whose 

frequency of application is determined by the repetition of the 

axles and whose magnitude of oscillation is v/2Lf or F/W. 

Repetition of axles 

The frequency of the impulses representing the passage of 

axles is given by 

w  =  f  ( 8 7 )  

where s is the spacing of the axles and v is the velocity of 

the vehicle. The harmonic oscillation which is assumed to 

represent the repetition of axles is then taken as 

P sin 2T7wt. (88) 

The differential equation of motion used in the forced 

vibration analysis will include the effect of damping. The 

damping effect will be taken as a resistance to the transverse 

vibration per unit length of bridge equal to 

. 
The differential equation of motion including damping is then 

expressed by 

EI + m ^ ? = f(x,t) (89) 
6^ " dt dt2 

The hannonic forcing function f(x,t) for the repetition of 

axle impulses is represented by the first harmonic component 
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of the load series and includes the effect of the mass of the 

load. The forcing function is written 

f(x,t) = £ 
à  y 

P sin 2Trwt - M ? sin 
ITX 

(90) 

where y is the vertical deflection of the mass. As discussed 

previously, the solution of this partial differential equation 

may be taken, as shown in Equation 79» as 

y = T(t) sin e 
Xi 

(91) 

Moreover, since the loading is equivalent to a stationary but 

harmonic ally alternating load, the vertical deflection of the 

mass is considered only a function of time, therefore 

y = T(t). (92) 

Applying Equations 91 and 92 to the partial differential 

equation of motion for this case and rearranging, results in 

the equation 

EIL."fr" T + 47rnbIm ̂  + (Im + 2M) = 2P sin 277wt. (93) 
jjm- dt dt 

Further rearranging of this equation yields 

dfr 

dt2 
ifrrx^ 1 d.T + EITt4 1 

i + m 
_ mL_ 

dt mlA 1 + nE 

T = 2P 
mL + 2M 

sin 2Trwt 

where, from Equation 75 

1 

». % 

( 9 k )  

(95a) 
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and from the natural frequency equation for a simply sup

ported beam 

2^ = p2 = uta2. 
mL4 

(95b) 

Substituting Equations 95a and 95b into Equation 91+ yields 

âî| + ij.Trnb ( ^ = 
dt2 Vf2 / dt h 

2P 

mL + 2M 
sin 277wt. (95c) 

The particular solution for T(t) in this differential equation 

will be of the general form 

Tp = A a in 2 7rwt + B cos 2 Trwt (96) 

where Tp is the particular solution for T(t). Substitution of 

this general solution into Equation 95c and equating the 

coefficients of the sine and cosine terms on both sides of the 

equation yields 

!j.7r2fT - k TT2™2 A -

2- ,  
2 fL 

8 7r wnb p B = 
2P 

mL + 2M 

2 
f ̂ ̂ 

8 ^2 A 4-
P 2 P P 

4 Tr r L - k Tf w B = 0. 

(97) 

(98) 

Solving these two equations for A and B gives 

A = 2P - S 
(mL + 2M) lj.7r2f| + A"b w2'  

(99) 

' \TF 
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2P 

( ffbf N 
Vf 2  

B = (mL 4- 2M) UTT^fjr ^ - 4 J * j"~ ' U00) 

It is convenient to reduce this particular solution by using 

the trigonometric identity 

A sin 27rwt + B cos 27rwt - D sin(27rwt - c*. ) (lOl) 

idle re 

yp p D 
A + B and tan cX = •£ . 

Thus the particular solution can be written, by using Equa

tions 79, 99» 100, and 301, as the following 

y _ 2P sin (27rwt -Q< )aln (102) 

p (»L + j ^ + 4 y + (2°b"2)2 

where yp is the particular solution of Equation 89* The first 

tern on the right hand side of Equation ICE can be expressed in 

the following form with the help of Equations 95a and 95b 

m L 2 F,. — F —— - = m L Z  do)) 
(mL + 2M)l|.Tnf£ mL 1+77 mL f2 W 77I+EI W 

Writing Equation 102 in terms of the static deflection in 

Equation 103, resulting from a stationary load W, yields 
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Tp =  ̂
mL i 
4si W 

sin (2 7rwt - o< ) sin 

2nb w2 
( 104) 

This equation represents the forced vibration or the particular 

solution of Equation 89 with the forcing function defined by 

Equation 90. The complete solution of the equation of motion, 

Equation 89, is the sum of a complementary solution and the 

particular solution. The general form of the complementary 

solution is a free oscillation of the type 

7c = 
"2 IT °b 'L/f2 A sin 271-f^t + B cos 2~rrf^t sin 

TTX 

(105 

where f^ is the loaded damped frequency and is equal to 

fr. = 1 - Vi 

Using the conditio ns that y=0 when t=0 and dy/dt=0 when 

t=0, the complementary solution can be evaluated. Thus the 

complete solution, the complementary plus the particular, is 

given ùj 
sln(2 TTwt - o< ) 

- e*"q(w/fI|)sin 2TTf^t 

7p + 7c 
2WL3 P 

7T1*-EI ¥ 2\2 

1 -
w 

3 
2n̂ w 

Is". 

7Ytc 
sin -7— (106) 

where q = 27Tnb t. The first and second terms in the 
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numerator of the brackets represent the particular and the 

complementary solutions respectively. The complementary solu

tion varies as a function of the damping. Consequently it 

dies out as the load passes along the bridge, the ratio of 

successive amplitudes of oscillation being 

By the time the load has reached the center of the bridge, the 

frequency of the bridge vibration corresponds to the frequency 

of the particular solution. Thus the complementary solution 

has been significantly reduced so that its effect will be dis

regarded. Therefore the maximum amplitude of this vibration 

occurs near the center of the span, when the term jjsin(27Twt -

ck) sin 1 la a maximum, and is defined by 

Since this deflection occurs as a result of the oscillations 

of a stationary live load W, it is in effect the dynamic 

variation of the elastic curve about the static deflection 

position of this curve. Therefore, the impact factor, as 

previously defined, for the maximum amplitude of vibration is 

the ratio of this amplitude to the static deflection. By re

placing the ratio P/W by the oscillating load effect v/2Lf, 

2WL3 

TT̂ EI 

P/W 
(107) 
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this impact factor can be written 

v/2If (108) 

+ (^s=) 

All of the simplifications used to arrive at this result are 

based on the assumption that the dynamic deflection curve of a 

continuous bridge is sinusoidal, therefore in applying this to 

a continuous structure, the length L in the oscillating load 

term will be taken as the length of a simple span bridge with 

a natural frequency equal to the natural frequency of the con

tinuous bridge. Thus, the equivalent length LQ(^ is 

i * - ( s ® r 7 r -  u 0 9 )  

The impact factor in Equation 108 closely resembles the 

amplification factor normally associated with forced vibra

tions. The ratio v/2Lf in the numerator represents the amount 

of the load effective in the forcing function as the driving 

force, and is evaluated from the oscillations produced in a 

beam by a single moving load of constant magnitude. These 

oscillations, although they result from a load of constant 

magnitude, are similar to those of an oscillating driving 

force. The effect of these oscillations will be increased if 

a repetition of axles occurs with the moving load of constant 

magnitude and if these axles are in phase with the oscillating 

load. The phase difference between these two effects is not 
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considered here since it is possible for the oscillating load 

effect and the repetitive axle effect to occur together at 

many different positions in a continuous structure. Instead, 

these two effects are considered to be In phase, thus giving 

an upper boundary impact factor for the forced vibration of 

bridges by the optimum combination of the repetition of axles 

with the oscillating effect of a smoothly rolling load. 
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EXPERIMENTAL INVESTIGATION 

The Test Structures 

The bridges tested in this research are part of the 

interstate highway system around Des Moines, Iowa. They have 

all been built within the last five years and are similar to 

the type of bridge currently being built in Iowa's primary and 

Interstate road system. The approaches to these structures 

are paved and there is a smooth transition to the bridge road

way. One factor used in selecting the bridges was the uni

formity of their actual roadway profile. All of the bridges 

tested are constructed of longitudinal stringers designed to 

act integrally with a reinforced concrete roadway slab. How

ever, a variety in this general type of structure was desir

able to determine the limitations of the theoretical forced 

vibration approach presented herein. The variety was obtained 

by selecting three continuous bridges in which different 

materials were used to fabricate the longitudinal stringers. 

The mass per unit length is approximately the same in these 

bridges. A much heavier bridge was tested which is a simple 

span bridge with a mass per unit length approximately double 

that of the other structures. The structures investigated in 

this research are discussed below. 
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Simple span prestressed concrete bridge 

The simple span bridge investigated has six postensioned 

pr©stressed concrete beams and a span of 100 ft. The stringers 

are designed and constructed to act compositely with the rein

forced concrete roadway slab. She roadway is 30 ft wide with 

a 3 ft safety curb on both sides (Figure 7). This structure 

is one span of a seven span bridge carrying westbound traffic 

on Interstate 35 over the Des Moines River north of Des 

Moines, Iowa. Each span of this bridge is isolated from 

adjacent spans by a one inch expansion joint. 

Continuous aluminum stringer bridge 

This structure is a 220 ft continuous four span bridge 

with four aluminum stringers which act compositely with a re

inforced concrete roadway. This bridge has a 30 ft roadway 

with a 3 ft safety curb on both sides (Figure 8). It carries 

traffic on Clive Road over Interstate 35 northwest of Des 

Moines, Iowa. 

Continuous steel stringer bridge 

This 2k0 ft continuous four span structure is very 

similar to the previous bridge except for the longitudinal 

stringers. The four steel stringers act compositely with a 

reinforced concrete roadway which is 28 ft wide with a 3 ft 

safety curb on both sides (Figure 9). This structure carries 
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the traffic on Ashworth Road over Interstate 35 west of Des 

Moines, Iowa. 

Partially continuous prestressed concrete bridge 

This four span bridge is 198.75 ft long with a 24 ft 

roadway. The reinforced concrete roadway slab is continuous 

over the interior supports and has a 2 ft safety curb on both 

sides. There are six pretensioned prestressed concrete beams 

in each of the four spans. The ends of the simple span beams 

are encased by a cast-in-place diaphragm at the piers. These 

pier diaphragms plus the continuous roadway slab, •which acts 

compoaitely with the stringers, result in a relatively con

tinuous bridge structure (Figure 10). This structure carries 

traffic over Interstate 35 at the Gumming Interchange south

west of Des Moines, Iowa. 

The Test Vehicles 

The vehicle effect has been simplified as much as 

possible in the theoretical analysis. The only parameters 

which are considered to be affected by the vehicles are the 

forcing function and the loaded frequency of the bridge. The 

forcing function is a function of the axle spacing and the 

velocity of the vehicle, and the loaded frequency of the 

bridge is a function of the ratio of the mass of the vehicle 

to the mass of the bridge span. The other variables of the 
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loading vehicles, and there are many, were disregarded. 

Vehicle "A" 

Vehicle "A" is an International L-190 van type truck 

(Figure 11). This truck used to check the Iowa State Highway 

Commission scales has a wheel base of llj. ft, 8 in and a tread 

of 6 ft. It weighs lf.0,650 lbs with 31,860 lbs on the rear 

tandem axle. The forced vibration resulting from this vehicle, 

for any given velocity, has two possible frequencies; that is, 

this vehicle could have the forced vibration frequency deter

mined by the passage of the individual axles in the tandem 

rear axle, in xAiich case the forcing frequency is v/4, or it 

could have a frequency determined by the passage of the front 

and rear axles, in which the forcing frequency is v/34.67. In 

the latter case the axle spacing has been taken as the distance 

to the center of the rear tandems• 

Vehicle "B" 

Vehicle "B" is a tandem axle, International VF-190 truck 

tractor pulling a 36 ft Monnon flat bed trailer (Figure 12). 

The tractor has a wheel base of 13 ft, 1 in and a tread of 6 

ft. The trailer wheel base is 23 ft and the tread of the 

trailer wheels is 6 ft. The total weight of this vehicle is 

73»500 lbs, with 32,900 lbs on the trailer tandem axle and 

31,700 lbs on the tractor tandem rear axle. This vehicle has 
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three effective axle spacings and therefore the forced vibra

tion resulting from this vehicle, for any given velocity, has 

three possible frequencies» These three frequencies are v/4 

resulting from the individual axle spacings of the tractor and 

trailer tandem axles, v/13.08 resulting from the tractor 

wheelbase axle spacing, and v/23 resulting from the trailer 

wheelbase axle spacing. For the tractor and trailer wheel-

base, the axle spacing has been taken as the distance to the 

center of the tandems. 

Instrumentation 

Strain recording equipment 

To determine the dynamic effect of the vehicles, the 

static and dynamic bridge moments were computed from the 

strain measured at the extreme bottom fiber of each stringer. 

To measure the strains, standard SR-lj. strain gages were used. 

The types of SR-ij. gages used were A-l, A-£, and A-9« The re

sistance to the ground of the SR-4. gages used on the steel and 

aluminum girders was as follows : The A-l gages 100,000 to 

1,000,000 ohms; the A-5 gages $00,000 to 1,000,000 ohms. The 

A-9 gages have approximately a six inch gage length and were 

used to record the strains in the concrete girders. 

The strain readings were recorded by a Brush universal 

amplifier (BL-520) and a Brush direct-writing recorder 
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(BL-274)* This equipment produces a continuous record of 

strain for which the time base can be varied by the speed of 

the recording paper. The speeds available vary from 1 to 25>0 

mm per sec. For a check of the time base as determined by the 

speed of the paper, a one second timer was used to actuate an 

event marker on the edge of the record. The Brush Universal 

amplifiers have a number of attenuator settings which vary 

from 1 microinch per inch of strain per Atténuâtor-Line to 

1,000 microinch per inch of strain per Attenuator-Line, and 

therefore allow a wide choice of amplification of the strain. 

The power for this Brush recording equipment was obtained from 

a 10 KW Onan motor generator. 

Location of strain gages 

The strains were measured in all the stringers at the 

center line of the single span bridge and in the outer and 

inner spans and at the interior supports for the continuous 

bridges. This allowed the impact to be evaluated at all the 

sections of maximum bending moment for the entire length of 

the bridge structures. Because the continuous bridges are 

symmetrical about their center interior support it was neces

sary to instrument only one half of these bridges with strain 

gages. 

Experimental sections. The experimental sections in

strumented for the evaluation of the bridge moments are 
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described below and shown on the elevation view of each 

respective bridge plan. 

I. Section I is located at a point four tenths of the 

outer span from the end support for all the four span con

tinuous bridges. Section I for the simple span prestressed 

concrete bridge is at the middle of the span. 

II. Section II is located at the middle of the interior 

span for the continuous steel stringer and aluminum stringer 

bridges. In the partially continuous four span prestressed 

concrete structure, Section II was offset 1 ft 6 in toward 

the center interior support to eliminate the effect of a 

transverse diaphragm at the middle of the interior span. 

III. Section III is located at the first interior sup

port of the continuous bridges. To eliminate or reduce any 

effect which the reaction diaphragms might have, Section III 

was offset from the center line of the reaction toward the ex

terior span, one foot, six inches, and one foot eight inches, 

for the aluminum stringer, the steel stringer, and the pre

stressed concrete stringer bridge respectively. 

IV. Section IV is located at the center Interior sup

port of the continuous bridges. This section is offset from 

the center line of the reaction a distance equal to the offset 

of Section III for each respective continuous structure. 

All of the bridges were Instrumented at each of the above 

sections with an SB-ij. strain gage at the center of the bottom 
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flange, or the extreme lower fiber, of each stringer. 

Experimental neutral axes. To obtain the momenta re

quired to evaluate the impact, the section moduli or relative 

section moduli of the stringers was required at the sections 

where the strains were measured. The effective section of the 

steel and the aluminum stringers vary considerably, depending 

upon their cross section due to cover plates or variable 

flanges and the proximity of the curbing to the outer 

stringers. These changes in cross section result in large 

changes in the moments of inertia and section moduli from one 

section to another. The actual section moduli and moments of 

inertia of the longitudinal stringers were determined experi

mentally by obtaining the position of the neutral axis of the 

longitudinal stringers. Since the bridges are symmetrical 

about their lateral and longitudinal center lines it was 

necessary to instrument only one quadrant of each bridge for 

the determination of the position of the neutral axes of all 

the experimental sections used to evaluate impact. To obtain 

the neutral axis five SR-lj. strain gages were positioned on 

each stringer. One gage was located at the center of gravity 

of the longitudinal stringer, and the other four gages at the 

extreme fibers and the quarter points of the stringer. The 

locations of the neutral axes were then used to determine the 

amount of concrete slab which acts compositely with the 

stringers. The entire roadway slab thickness was used in 



www.manaraa.com

81 

these calculations • The moment of inertia was then determined 

using the necessary amount of slab. A modular ratio of 10 was 

used for the steel stringer bridge and a ratio of 3*33 was 

used for the aluminum stringer bridge in these calculations. 

However, once the position of the neutral axis is known the 

moment of inertia is independent of the modular ratio used. 

In both of the prestressed concrete stringer bridges, the 

lateral spacing of the stringers is much smaller and the 

cross sections of the stringers do not vary along the beams. 

Moreover, the magnitude of the strains in the web and upper 

flanges of the prestressed concrete stringers were so small as 

to make the determination of a neutral axis very uncertain. 

Therefore, the section moduli of the longitudinal prestressed 

concrete stringers were assumed to be equal at each section 

investigated. It was found that in the steel and aluminum 

stringers, in which the experimental neutral axes were deter

mined, that the actual variation in the section moduli made 

very little difference in the impact since the impact is a 

difference in moments or a relative difference in the recorded 

strains. Thus the assumption made in the prestress concrete 

bridges will not appreciably affect the results regardless of 

the exact section moduli. 
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Experimental Procedure 

Performance of the teats 

The impact resulting from the action of the loading 

vehicles has been derived analytically. To experimentally 

determine this dynamic effect, static tests were first per

formed by the loading vehicle creeping across the bridge with 

the motor idling. The maximum moment in the bridge cross 

section and the longitudinal position of the vehicle was com

puted. This was used as a base for the evaluation of the re

sults of the dynamic tests. The dynamic tests were then con

ducted at vehicle speeds beginning at approximately 10 mph and 

increasing by increments up to the maximum attainable speed. 

The maximum dynamic moment was obtained In the cross section 

for the vehicle in approximately the same longitudinal position 

as the maximum static moment. The dynamic and .static tests 

were performed along four different lanes on the bridge road

way. Two lanes for each direction of travel with one lane 

corresponding to the highway lane and the other lane at the 

longitudinal center line of the bridge. For each assigned 

lane, the left front tire of the vehicle was guided along a 

painted stripe indicating the lane on the bridge roadway. 

During the runs a variation to one side or the other of the 

painted stripe was never more than one and one-half inches. 

Pneumatic tubes were placed across the bridge roadway at 
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of the center interior support for the continuous bridges and 

at the center line of both exterior supports for the simple 

span bridge. The signal produced when the vehicle tire passed 

over this tube activated an event marker on the strain record. 

Knowing the chart speed and the distance between tubes, the 

average vehicle velocity was computed. These event markers on 

the strain record also enabled the longitudinal position of 

the vehicle to be determined at any time. 

The testing of the continuous aluminum and steel stringer 

bridges was divided into two series for both test vehicles due 

to the limitation of the number of channels of Brush recording 

equipment. Section I and III were tested in one series and 

Sections II and IV In the second series. Both vehicles "A" 

and "B" were used in the dynamic testing of these bridges. 

The increased number of stringers in both the prestressed con

crete bridges necessitated one series of tests for the test 

vehicle for each experimental section. Only Vehicle "A" was 

used in the dynamic testing of these bridges. At each test 

section the strain was measured at the extreme lower fiber of 

the stringers. In each series of tests the vehicle made four 

static runs, one in each lane, and sixteen or twenty dynamic 

runs, four or five in each lane, depending on the maximum 

speed obtainable for the particular structure. A continuous 

strain time record was obtained for each run. Each strain 



www.manaraa.com

84 

record, therefore, contains a continuous recording of the 

outer fiber strains for the stringers at the test section, an. 

event marker trace for the longitudinal location of the 

vehicle and vehicle speed, and a time base with a one second 

interval. 

Data reduction 

The test record shown in Figure 13 is a typical dynamic 

strain record showing the variation of the outer fiber strain 

as a vehicle moves across the bridge. The static strain time 

curve has been superimposed on the dynamic strain time curve 

and is indicated by a dotted line. This record was obtained 

from a stringer at Section I of the simple span prestressed 

concrete stringer bridge with Vehicle "A" traversing the 

bridge at 38*4 feet per second. 

The maximum static bridge moment is obtained by summing 

the moments in all the stringers computed from the maximum 

static strains. Similarly, the total maximum dynamic bridge 

moment is determined by summing the dynamic moments in all the 

stringers computed from the maximum dynamic strains. The 

dynamic effect, or the impact, of the vehicle was then 

evaluated from the moments as the ratio of the difference or 

the total dynamic and static bridge moments to the total 

static bridge moment. 

The passage of the front axle and each individual axle of 
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the tandems over the pneumatic tubes is clearly shown by the 

vehicle location trace. In effect, the vehicle is moving from 

left to right and this trace indicates the time each individual 

axle crosses over the center line of the exterior supports. 

The upper event marker, used as the time base, indicates 

time in one second intervals. This time base was used for 

determining the vehicle speed and the frequency of bridge vi

bration. The frequency of vibration of the bridge at maximum 

moment was determined by using the maximum peak-to-peak period 

of vibration indicated by the T in Figure 13. 

The amplitude of the residual vibration which continues 

after the vehicle has gone off the bridge was very small in 

this run. This was the usual case for the concrete stringer 

bridges, however, the amplitude of residual vibration for the 

steel and aluminum stringer bridges was usually much larger. 

The unloaded natural frequency of the bridge and the bridge 

damping was evaluated from this residual vibration. 
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RESULTS AND DISCUSSION 

Natural Frequencies 

First mode of vibration 

The general theoretical method employed to determine the 

natural frequencies of continuous bridges assumes that the 

stiffness, the product of E and I, is constant throughout the 

length of the bridge. This solution Is applicable for most 

steel stringer and prestressed concrete stringer bridges since 

their cross section usually remains constant except for the 

usual cover plates near the interior supports of the steel 

bridges. As discussed previously, the effect of increased 

stiffness at the piers, due to cover plates, should not 

appreciably affect the first mode of vibration. However, the 

aluminum bridge has a different value of EI in each span in 

addition to the increased stiffness at the piers. Thus a 

solution was obtained for this bridge which takes into account 

the large change in stiffness or the various spans but is 

applicable only for the first mode and higher odd modes of 

vibration. 

The solutions of the frequency equations yield values of 

KL from which the natural frequencies are determined. Values 

of KL can be obtained from Figure 1, 2, or 3 since these 
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figures graphically represent the first mode solution of the 

various frequency equations. The natural frequency is then 

found by using Equation lj.0, 

Values of KL^ of 3.1^00, 3*339, and 3*4°8 were determined 

analytically for the aluminum, steel, and continuous pre

stressed concrete bridge respectively. The natural fre

quencies resulting from these values of KL are compared with 

the experimentally obtained natural frequencies in Table 1. 

Also show in this table are the parameters of the various 

bridges which are required for the determination of the 

resonant frequencies. The moment of inertia used in the 

stiffness parameter Eglg is the moment of inertia of the en

tire cross section at Section II of the various continuous 

bridges and includes the sidewalk curb. For the simple span 

bridge, the solution of the frequency equation yields a value 

for KL of nlT which is given in most tests on vibrations (21). 

The first mode of natural frequency obtained for this bridge 

is compared with the experimental value in Table 1. A modular 

ratio, the modulus of elasticity of the stringer over the 

modulus of elasticity of the reinforced concrete slab, of 

3.i|l|., 10, and 1.25 was used in the aluminum, steel and both 

concrete bridges respectively. Thus the modulus of elasticity 
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Table 1. Naturel frequencies 

Bridge Aluminum 
stringer 
bridge 

Steel 
stringer 
bridge 

Continuous 
concrete 
stringer 
bridge 

Simple 
span con
crete 
stringer 
bridge 

1*2 (ft) 68.75 67.50 56.25 100.0 

Ll 

*2 
0.600 0.777 0.766 -

E2I2 (lb-in2) 185.1x1010 213.14JC1010 197.8xl010 1.609xl010 

Vl 
B2*2 

0.615 1.0 1.0 -

•2 tlb-3f2> 0.9% 0.889 0.889 1.721 

^1 
m2 

0.989 1.0 1.0 

KL2 (Radians) 3.400 3.399 3.408 3.1416 

ftheo. (OP*) 3.825 4.34 6.06 3.34 

fexper. ̂ ps) 3.97 4.57 7.80 4.26 

ftheo. 
f Aexper. 

0.961}. 0.951 0.780 0.784 

of the reinforced concrete roadway slab and the prestressed 

concrete stringers were taken as the value used in design for 

each case, this probably accounts for most of the error in the 

theoretical frequency determination of the prestressed concrete 
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stringer bridges. It was observed during the experimental 

testing that the natural frequency of the bridges reduces more 

than theory indicates it should when a vehicle first enters 

the bridge span. However, once the vehicle Is on the bridge 

the reduction in natural frequency, as the vehicle position 

changes, is similar to the theoretically calculated value but 

It is very difficult to measure accurately. 

Higher modes of vibration 

The first mode of vibration was usually found to be 

prevalent In controlling the response of the bridges to the 

forcing function of the axles. This was true in most cases 

and at experimental Sections III and IV where the first mode, 

or higher odd modes, have the least effect. However, an out

standing exception occurred in the case of the aluminum 

stringer bridge. In this structure the experimental impact at 

Section IV, the section at the center interior support, was 

found to be a function of a higher mode of vibration. The 

resonance condition in this case is a function of the second 

mode. This is the first root of the even mode frequency equa

tion for a four span symmetrical bridge (Equation 39)» and 

corresponds approximately to the vibration of the beam with 

both ends fixed. Therefore, it is reasonable to assume that 

this vibration, when it occurs, will result in the largest 

dynamic increase in moment at the supports. The theoretical 
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second mode solution was found by using Equation 39 which was 

derived by assuming a uniform cross section. This equation 

was used because the increased accuracy of a special solution 

including the effect of the change in stiffness of each span 

would be insignificant when compared to the large change in 

stiffness near the piers due to the increase in cross section 

of the aluminum stringers at that point. The value of KLg for 

the second mode is 4«345 which yields a vibratory frequency of 

6.25 cycles per second. This theoretical mode frequency 

agrees closely with the measured frequencies occurring while 

the vehicle is on the inner spans vibrating the bridge at its 

second mode. However, this frequency could not be compared 

with an experimental unloaded natural frequency because this 

mode of vibration occurred only when the vehicle was on the 

inner span. 

Effect of the vehicle 

The loaded natural frequency is applied in the determina

tion of the natural frequency of the bridge which occurs when 

the vehicle is on the span. This value of loaded natural fre

quency will control the resonance condition of the frequency 

of the vehicle forcing function with tue natural frequency of 

the bridge. This resonance condition has the greatest effect 

on the amount of impact when the vehicle is near the position 

of maximum moment. 
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The reduction in natural frequency due to the mass of the 

vehicle has been theoretically determined and although it 

could not be correlated with the experimental reduction, due 

to the difficulty of measuring it, it is desirable that the 

effect of the vehicle mass be taken into account. This effect 

can be considered either by the total effect of the individual 

axles or by the effect of the entire mass at its center of 

gravity. If the effect of each axle is determined individually, 

the over all effect of the vehicle is different than if the 

mass of the entire vehicle is placed on the bridge at one 

point. The actual vehicle, although applied to the bridge by 

means of several axles, is usually made up of a rather con

centrated mass. For this reason Vehicle "A" was used as a 

concentrated mass. The truck and trailer, Vehicle "B", was 

made up of large concrete blocks representing the load and 

located directly over the tandem axles of the truck and 

trailer. Therefore for this loading, the individual effect of 

the truck tractor and the trailer was found when the center of 

gravity of the truck tractor and the center of gravity of the 

trailer axles were at the center of the span. 

The different lengths of the spans in the continuous 

bridges result in a different loaded natural frequency for the 

load in each span. Therefore in the correlation of the experi

mental and theoretical impact, an Impact curve is obtained for 

the loaded frequency as each span is loaded. Moreover, since 
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the truck tractor and trailer of Vehicle "B" was used 

separately, the reduction in frequency is different for each 

part of the vehicle. All of the various values of loaded fre

quency will have an individual impact curve determined by 

Equation 108. To reduce the number of these closely spaced 

curves and to simplify the presentation of the impact data, 

only two curves are shown for the reduction in natural fre

quency. These curves are for Vehicle "A" and the truck 

tractor of Vehicle "B" in the outer and Inner spans. These 

two loads have the same effect on the reduction in frequency 

since their masses are within 0.10 of each other. These 

various theoretical loaded natural frequencies obtained for 

the vehicles in the outer and inner spans are 98.0$ and 

94e90» 97*10 and 95*2%, and 96.60 and 94*6^ of the unloaded 

natural frequencies of the continuous aluminum, steel, and 

concrete stringer bridges respectively. The loaded natural 

frequency of the simple span bridge is 95*30 of the unloaded 

natural frequency for Vehicle "A" at the center of the span. 

Forced Vibration 

Forcing function 

In the determination of impact, the frequency of the 

forcing function of the vehicle has been taken as the cyclical 

repetition of the axles. This cyclical repetition is determined 
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by the frequency of passage of the axles across the bridge» 

This action of the axles might be interpreted as the forcing 

of a nodal point across the structure by each axle. Therefore 

for the fundamental mode of forced vibration with no higher 

harmonics, the spacing of axles will be one wave length of the 

bridge vibration. The solution obtained for the differential 

equation of motion of a beam subjected to this forcing func

tion consists of two parts, the complementary solution and the 

particular solution. The complementary solution represents 

the free vibration of the beam and the particular solution 

represents the steady state forced vibration occurring after 

the complementary solution has been reduced to an insignifi

cantly small part of the total vibration. This steady state 

forced vibration, the particular solution, has the same vibra

tory frequency as the forcing function. Therefore, in the 

cases in which only the particular solution is applicable, 

that is, when the complementary solution has been reduced 

significantly, the frequency of the vibratory motion of the 

structure should correspond to the frequency of the forcing 

function. To determine the applicability of this concept, it 

must be shown that the forcing frequency of the axles is pre

dominant in the forced vibration of the bridge, or that the 

response of the bridge is similar to that of a steady state 

forced vibration. The frequency of vibration of the structure 

was determined at the time the vehicle was producing the 
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maximum moment. This value of frequency was obtained by using 

the one or two cycles of vibration at the maximum amplitudes 

of vibration. It was found in this experimental work that the 

natural frequency of the structure was prevalent as the vehicle 

entered the bridge, and further, that this natural frequency 

more nearly corresponds to the computed value than to the ex

perimental value of natural frequency obtained when no vehicle 

was on the bridge. As the vehicle approached the position of 

maximum moment the frequency became approximately equal to the 

frequency of the forcing function (Figures U4. to 18). Since 

there are two different forcing frequencies available for 

Vehicle "A" and three different forcing frequencies available 

for Vehicle "B", there were a number of different frequencies 

which could be used as the frequency of the forcing function. 

However, only one axle spacing was predominant in determining 

the frequency of the forcing function. This is readily shown 

in Figures 11}. to 18 in which the frequency of the bridge at 

maximum moment is shown as a function of the velocity of the 

vehicle. Variations in this result from the tendency of the 

bridge vibration to remain near the resonant frequency of the 

structure a higher speeds where the forcing frequency is im

pressed by the axle spacing of the vehicle wheelbase. 

An exception to the well-defined forcing frequency of the 

velocity divided by the axle spacing occurred in the continuous 

prestressed concrete bridge (Figure 19). This structure was 
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constructed by placing a continuous reinforced concrete road

way over four spans of simply supported prestressed concrete 

beams. Unlike the other bridges tested, this bridge does not 

have a point bearing to allow free rotation at the supports 

and it is not fully continuous. The interior supports have a 

fifteen inch reinforced concrete diaphragm resting on an 11/32 

inch preformed fabric bearing pad. These diaphragms encase the 

ends of the beams at each interior support and combine with 

the roadway slab to make the structure partially continuous. 

The exterior supports have approximately sixteen inches of the 

end of the beam resting on similar 11/32 inch bearing pads. 

The effect of the large flat bearing surfaces at the supports 

heavily damps the vibration of the continuous bridge. These 

bearings also cause a certain amount of fixity at each support 

thus further complicating the vibratory system. Moreover, the 

pier diaphragms acting with the continuous reinforced concrete 

roadway slab allow only the negative moments to be trans

mitted across the piers, or Interior supports. Positive 

bending at the piers is eliminated due to the tension in the 

bottom fibers of the pier diaphragms. These diaphragms are 

not reinforced to resist tension in that direction. Therefore 

it is very difficult to establish a well defined vibratory 

system in such an incongruous structure. This is exemplified 

In Figure 19 by the random vibration of the structure at the 

maximum moment which results from the passage of Vehicle "A". 
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For this reason, the application of the forced vibration theory 

presented herein for the determination of the response of this 

structure to the forcing function of the repetition of axles 

has very little significance. 

Impact 

The impact as determined herein is a function of the 

amplitude of forced vibration. The derivation of the theo

retical Impact was made by assuming that the forcing frequency 

of the axles was predominant in producing the impact. The 

denominator of the thep r e; t ic al impact factor is a function of 

the ratio of the forcing frequency to the loaded natural fre

quency of the structure and the ratio of the damping factor to 

the ùtioaàëd. natural frequency of the structure. The numerator 

of this impact factor is a function of the ratio of velocity 

to the length of the span. Therefore since the forcing fre

quency is the ratio of the velocity of the vehicle to the axle 

spacing, the magnitude of the theoretical impact will depend 

upon the velocity, axle spacing, length of span, loaded 

natural frequency, unloaded natural frequency, and the damping 

factor. 

The damping factor was obtained experimentally from the 

decreasing amplitude of the residual vibrations. To experi

mentally determine this, the amplitude of displacement Y of 

the strain time curve is measured at time t0 and at a later 
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time tN which is N cycles later. The ratio of these ampli

tudes Tq/Yjj is a constant, for viscous damping, and l/N times 

the natural logarithm of this ratio is called the average 

logarithmic decrement. This quantity therefore does not de

pend on the way the damping was defined in the original equa

tion of motion and thus is often used as the measure of the 

damping capacity of a structure. The average logarithmic 

decrement is then given as 

*1086 i ' 
The damping capacity of each bridge will be given in terms of 

the average logarithmic decrement. 

Simple span preatressed concrete bridge. The correlation 

of the experimental and theoretical impact for the postensioned 

prestressed concrete bridge Is shown in Figure 20. The experi

mental impact values determined at the center line of the 

simple span (Section I) are shown with the theoretical impact 

curves obtained by Equation 108. A loaded natural frequency 

which is 95.3$ of the theoretical natural frequency of 3.3I*. 

cycles per second was used in determining the theoretical im

pact curves. The average logarithmic decrement for this 

bridge is 0.0916. The resulting amount of damping did not 

affect the theoretical curves except at resonance. Therefore 

for the portion of the impact curves shown in this figure, the 

effect of the damping is insignificant. Resonance occurs when 
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the ratio of the forcing frequency or the frequency of the 

repetition of the axles to the loaded natural frequency of the 

structure is one. This condition occurs two times for Vehicle 

"A". The individual axles of the tandem rear axle unit acting 

individually cause a resonance at the smaller velocities, and 

the front axle combined with the tandem rear axle acting as 

one unit cause resonance at the larger velocities. The impact 

increases as the ratio of the forcing function to the loaded 

natural frequency approaches one. The experimental impact 

values agree with the theoretical impact curves which, as pre

viously discussed, yield an upper limit of impact for the 

assumptions made in the derivation. The maximum vehicle 

velocity limited a complete investigation of the wheelbase 

resonance condition. 

Continuous aluminum stringer bridge. The experimental 

and theoretical impact for this structure is shown in Figures 

21 to 2]+. The theoretical curves show a good agreement with 

the experimental impact values. As previously discussed an 

additional resonance occurred in this structure when the 

bridge wasexclted at its second mode of vibration by the 

individual axles of the tandem rear axle unit. This condition 

is most prominent at the center interior support. A correla

tion of the theory presented herein for the upper limit of the 

wheelbase resonance condition was not obtained due to the 

limited velocity of the vehicles. Similarly, the resonance 

condition of the trailer wheelbase could not be investigated. 
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FIGURE 21. IMPACT FOR ALUMINUM STRINGER BRIDGE AT SECTIONS I 8 H FOR 
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FIGURE 23. IMPACT FOR ALUMINUM STRINGER BRIDGE AT SECTIONS I S II FOR 
VEHICLE "B" 
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A loaded natural frequency of 98.0$ and 9l|..9$ of the theo

retical natural frequency of 3*825 cycles per second was used 

for the outer and Inner span resonance curves respectively. 

The average logarithmic decrement for this bridge is 0.050. 

The resulting amount of damping did not affect the theoretical 

curves except at resonance. The maximum values of impact 

written as a percentage vary from 20.6-31.9$ and 19.1-20.8$ 

for Vehicles "A" and "B" at the positive and negative sections 

respectively. Moreover it should be noted that the resonance 

condition of the individual axles of the tandem rear axle unit 

cause an experimental Impact almost as large as the resonance 

condition of the vehicle wheelbase at higher velocities. 

Therefore the resonance effect of the repetition of axles is 

important at the slower speeds. 

Continuous steel stringer bridge. The correlation of the 

experimental and theoretical impact for this bridge is shown 

in Figures 25 to 28. More experimental impact values lie out

side the theoretical impact envelope in this bridge than in 

the previous bridges. The greatest discrepancy occurs as the 

resonance condition is approached from the left side of the 

figure. That is, the large number of experimental points out

side the theoretical envelope at velocities lower thai, the 

resonance velocities might result from the loaded natural fre

quency of the bridge being smaller than the value used to ob

tain the impact curves. A smaller loaded natural frequency 
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FIGURE 26. IMPACT FOR STEEL STRINGER BRIDGE AT SECTIONS 331 8 IT FOR 
VEHICLE "A" 
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FIGURE 27. IMPACT FOR STEEL STRINGER BRIDGE AT SECTIONS X Ô II FOR 
VEHICLE "B" 
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would move the theoretical curves to the left In these 

figures. However, the theoretical curves shown still 

qualitatively describe the variations in the experimental im

pact. There is no indication in this structure of any higher 

modes of vibration. Moreover, not enough experimental data 

was obtained for a good evaluation of the resonance condition 

of the individual axles of the tandem axle unit with the first 

mode of vibration. Therefore, the experimental impact values 

for the tandem axles were smaller than those obtained by the 

resonance condition for the vehicle wheelbase. Also, a large 

enough velocity was not obtained for the trailer wheelbase to 

cause a resonance condition. The maximum values of impact, 

written as a percentage, vary from 44»1-26.5$ and 22.8-39.2$ 

for Vehicles "A" and "B" at the positive and negative sections 

respectively. A loaded natural frequency of 97*1$ and 95.2$ 

of the theoretical unloaded natural frequency of 4*34 cycles 

per second was used for the outer and inner span impact curves 

respectively. The average logarithmic decrement of this 

bridge is 0.062. This amount of damping did not affect the 

theoretical curves except at resonance* 

Partially continuous concrete stringer bridge. The 

correlation of the experimental and theoretical impact for 

this bridge is shown in Figures 29 and 30. A loaded natural 

frequency of 94*6$ of the theoretical unloaded natural fre

quency of 6.06 cycles per second was used to obtain this curve. 
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The curve for the vehicle on the outer span is not shown since 

it is just to the right of this curve similar to those in the 

previous figures. This curve includes the effect of damping, 

which was considerably larger for this structure than for the 

previous structures. The average logarithmic decrement of the 

residual vibration of this structure is 0.ij.06. This amount of 

damping results in a reasonable upper limit for the impact 

curves of 0.298, for the resonance condition caused by the 

individual axles of the tandem axle unit. Since there is not 

enough experimental impact data at the velocity corresponding 

to this resonance condition, this upper limit could not be 

verified. The experimental impact values show some agreement 

with the theory at the positive moment sections. However, at 

the negative moment sections some of the impact values are 

large at the higher velocities. But, since the total moment 

in the section is small, the large impact value does not 

result in an over-stress. The large impact results because a 

very small static live load strain at the center interior sup

port was obtained as the vehicle moved across the bridge with 

the motor idling. Then, when the load was applied dynamically 

at larger velocities, the strains became significantly larger. 

Therefore, the values of impact at Section IV become quite 

large due to a relatively large increase in a small value. 

This action is the result of the different dynamic and static 

responses of a bridge which acts as a continuous beam for 
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negative moments at the interior supports and as a simply sup

ported beam for positive moments at these supports. This in

consistent response is, therefore, due to the nonhomogeneous 

or incongruous structural system. It was shown previously 

that the experimental unloaded natural frequency of this 

structure corresponds to the theoretical unloaded natural fre

quency determined on the basis of a continuous structure. 

However, the forced vibration frequency of this structure did 

not correspond at all to the frequency of the forcing function 

at maximum moment . These inconsistencies in the response of 

the bridge will not allow the dynamic response of this 

structure to be analyzed by the forced vibration analysis as 

presented herein. 
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CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

Natural frequency 

The theoretical unloaded natural frequencies of the 

bridge structures, neglecting damping, agree very well with 

the experimentally determined unloaded natural frequencies for 

the aluminum and steel stringer bridges and rather well for 

the concrete stringer bridges. When the theoretical loaded 

natural frequency reduction is applied to both frequencies to 

obtain the theoretical and experimental loaded natural fre

quencies, it is found that the theoretical loaded natural fre

quency compares better with the forced vibration resonances 

than the experimental loaded natural frequency. 

The reduction in natural frequency due to the addition of 

the vehicle mass to the vibratory system has been analyzed by 

the energy method. In this method, the shape of the vibratory 

curve was assumed first to be a polynomial and secondly to be 

a sinusoidal curve. The constants in the general equations 

for these curves are evaluated by the boundary conditions for 

the structures. The general polynomial curve used did not 

agree nearly as well for the unloaded natural frequency as did 

the sinusoidal curve. 
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It Is assumed, therefore, that the configuration of the 

unloaded vibrating continuous beam is reasonably close to a 

sinusoidal curve. The use of this assumed curve enables the 

effect of the mass of the vehicle on the unloaded natural fre

quency to be taken into account with reasonable accuracy. The 

accuracy of the sinusoidal curve also leads to the assumption 

that the deflection curve in the forced vibration analysis is 

a sine curve. 

Forcing function 

The effect of the vehicle Is assumed to be an oscillating 

forcing function whose frequency is the frequency of axle 

repetition and whose oscillating force is the oscillating load 

effect of a constant force. Thus the effect of the vehicle 

has been simplified as much as possible. The correlation of 

the theoretical and experimental impact indicates that the 

simplifications made in the effect of the vehicle are justified 

for the bridges tested and the experimental velocities used. 

Forced vibration 

Impact, as presented herein, is determined by the applica

tion of forced vibration theory to the dynamic problem of 

multiple axle vehicles traversing continuous highway bridges. 

The results of this study show a good qualitative correlation 

between the amount of impact and the proximity of the frequency 



www.manaraa.com

123 

of axle repetition to the loaded natural frequency of the 

structure, or the resonance condition. The correlation is 

good for bridge structures which have a well defined vibratory 

system. That is, if the structure responds to a forced vibra

tion without changing its natural modes of vibration, as ob

tained for the free vibrations of the structure, the response 

of the structure is similar to that of a steady state forced 

vibration. 

Recommendations for Future Study 

The research contained in this study has taken into 

account, theoretically, the factors in a bridge structure 

which will affect its response to a forced vibration. The 

correlation of this theory is obtained by field testing of 

existing bridge structures. The field testing, as a means of 

evaluating impact, indicates that forced vibration theory is 

applicable to the problem of bridge impact. However, the 

factors affecting the response of the bridge structure need to 

be investigated further. A good example of this is the varia

tion in the amount of composite action exhibited between the 

reinforced concrete slab and the longitudinal stringers along 

the length of the bridge. This aspect of the bridge structure 

is not entirely known for continuous bridges, and is basic to 

the response of the bridge to live loads. Another problem in 

the response of the bridge is the effect of the live load mass. 
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A theoretical analysis was used in this research but the 

Irregularities exhibited by the concrete bridges indicate that 

the effect of the load may be more complicated than the simple 

effect of the mass of the vehicle. An experimental investiga

tion of this phenomena could include an additional objective 

which might be more important than the analysis of the effect 

of the live load mass. The other problem which could be in

vestigated in a similar manner is the very important problem 

of an upper limit for the amplitude of forced vibration at 

resonance. At the onset of this research is was felt that the 

damping would limit the maximum impact for the resonance condi

tion. It has been shown that this is not true for most of the 

bridges tested. This problem of the maximum amplitude of 

forced vibration, or maximum impact, and the lesser problem of 

the effect of the vehicle mass on the natural frequency of the 

structure, could be investigated by a study of the forced 

vibration of a structure with a large variable speed oscilla

tor. This oscillator, used in conjunction with a stationary 

vehicle on the bridge, would provide some answers to the prob

lem of the natural frequency of the bridge and vehicle. In 

addition, the use of this oscillator with varying amounts of 

the oscillatory force, could be used to Investigate the prob

lem of an upper limit for the impact curves. It Is felt by 

the writer that a form of damping, which is evidently not 

viscous, limits the amplitude of the vibratory motion of the 
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structure, notwithstanding the effect of the springing of the 

vehicle which has been disregarded. It is possible that this 

damping becomes a function of amplitude after the amplitude of 

vibratory motion exceeds a certain value. 

The research indicated above is based on the theory that 

before the effect of the various parameters of the vehicle and 

the roadway surface are integrated into the problem of Impact, 

a thorough knowledge of the vibratory action and response of 

the structure is desirable. 
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APPENDIX 

The following tables (Tables 2 to 14) list the results of 

the experimental tests. The run number, vehicle velocity, and 

the frequency of the bridge vibration at maximum moment are 

given in addition to the impact for each run. Each table 

represents a series of tests conducted in one sequence. The 

impact is shown for each respective vehicle and experimental 

section. The location of the vehicle at the time the impact 

was evaluated is shown by the subscripts. These subscripts 

also indicate which part of Vehicle "B", the truck tractor or 

trailer, was at that position. The subscripts denote the 

following: 

a The vehicle is on the outer span (L^) near Section I. 

b The vehicle is on the inner span (Lg) near Section 

II. 

c The vehicle is on the inner span beyond the center 

interior support from Section II. It is, therefore, 

in a position symmetrical about the center pier with 

position b. 

e This indicates that the position is with respect to 

the truck tractor portion of Vehicle "B". 

f This Indicates that the position is with respect to 

the trailer portion of Vehicle "B". 
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Table 2. Impact for simple span 
Section I for Vehicle 

concrete stringer bridge at 
"A" 

Run Velocity 
(fps) 

Impact 
la 

Frequency of bridge 
vibration leps) 

3N-10 14.7 0.140 3.8 

3N-20 28.8 0.070 5.5 

3N-30 38.4 0.180 3.4 

33-10 13.3 0.152 3-45 

38-20 27.8 0.0 jl 2.3-5.0 

38-30 36.2 0.117 2.7 

5N-10 13.4 0.044 3.7 

5N-20 24.8 0.040 5.0 

5N-30 41.7 0.052 3.2 

58-10 13.5 0.168 3.5 

58-20 25.0 0.098 4*6 

58-30 39.2 0.211 3.6 
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Table 3» Impact for aluminum stringer bridge at Sections I 
and III for Vehicle "A" 

Run Velocity 
(fps) 

Impact 
Ia IHb 

Frequency of bridge 
vibration (cps) 

2E-10 14.1S 0.158 0.137 3.3 

2E-20 31.0 0.07 0.114 5.8 

2E-30 42.65 0.02 0.163 3.3 

2E-4O 51.1 0.11 0.321 3.4 

5E-10 13.7 0.184 0.085 3.75 

5E-20 32.94 0.004 0.057 6.6 

SE-30 40.4 0.108 0.149 3.5 

5E-40 58.1 0.152 0.241 3.6 

2W-10 16.7 0.142 0.149 3.45 

2W-20 27.82 0.0:7 0.032 8.3 

2W-30 40.3 0.021 0.074 9.4 

5W-10 14.55 0.170 0.159 3.85 

5W-20 26.4 0.001 0.058 6.6 

5W-30 40.6 0.021 0.053 9.25 

5W-40 49.1 0.073 0.153 3.60 
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Table 4* Impact for aluminum stringer bridge at Sections II 
and IV for Vehicle "A" 

Run Velocity 
(fps) lib 

Impact 
IVb IVc 

Frequency of bridge 
vibration (cps) 

2E-10 15.4 .029 .151 .085 3.6 
2E-15 23.98 .081 ,248 .091 5.25 

2E-20 27.64 .0204 .250 .059 6.2 
2E-30 34.82 .0472 .142 .ill 3.1 

2E-35 41.40 .1011 .041 .107 3.3 
2E-40 43.65 .159 .109 .112 3.5 

5E-10 14.31 .087 .116 .059 3.4 
5E-15 23.4 .179 .123 .12 2 4.9 

5E-2O 28.58 .054 . 186 .070 6.3 
5E-30 40.55 .156 .098 .113 3.95 
5E-40 52.85 .1018 .1187 .113 3.85 

2W-10 12.36 .039 .139 .059 2.8 
2W-20 25.3 .044 .215 — — 5.5 

2W-30 38.88 .028 .132 .165 3.2 
2W-35 47.00 .119 .187 .091 3.55 

5W-10 12.76 .2065 .150 .008 2.9 
5w-i5 18.1 .155 .150 .101 4.5 

5W-18 20.8 .088 .217 .098 5.5 
5W-20 27.5 .038 .151 5.0 

5W-25 26.95 .038 .308 5.9 
5W-30 36.10 .052 ,012 .150 4.0 

5W-35 43.1 .034 .040 .160 4.0 
5w-4o 43.85 .in .023 .135 3.6 
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Table 5» Impact for aluminum stringer bridge at Sections I 
and III for Vehicle "B" 

Run Velocity Impact Frequency of bridge 
(cps) Ia III^ e vibration (cps) 

2W-10 14.10 .094 .198 3.3 

2W-20 20.3 .049 .072 4.2 

2W-30 35.26 .051 .138 3-3 

5W-10 14.98 .100 .110 3.3 

5w-12 14.89 .191 .209 3-4 

5W-20 25.98 .101 .088 6.0 

5W-30 36.2 .169 .102 3.6—8*4 

5w-40 37.3 .156 .036 10.0 

2E-10 13.42 .054 .202 3.0 

2E-20 27.5 .077 .070 5.3 

2E-30 42.3 .053 0 4.1 

2E-40 45.6 .100 .122 3.5 

5E-10 17.05 .050 .179 3.65 

5E-20 26.42 .102 .111 6.25 

5E-30 39.3 0 .121 3.8 

5E-40 49.1 .160 .190 3.3 
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Table 6. Impact 
and IV 

for aluminum stringer bridge at Sections II 
for Vehicle lfB" 

Run Velocity 
(fps) IIb 

Impact 
IVb,e ivc,e 

Frequency of bridge 
vibration (cps) 

2W-10 11.79 0 .091 .025 2.8 

2W-20 21.1+6 .131 .089 .039 5.5 

2W-30 34-5 .106 .014 .140 3.7 

5W-10 11.59 .030 .041 .042 3-3 

5W-20 24.6 .100 .120 .030 5.0 

5w-30 35.5 .128 • 034 .112 3.8 

2E-10 11,38 .058 .072 .025 3.5 

2E-20 24.57 .139 .146 .039 5.2 

2E-30 34-6 .138 .240 .140 3.2-7.2 

5E-10 11.59 .043 .062 .072 2.8 

5E-20 22.44 .135 .030 

C
O

 0
 •
 5.0 

SE-30 33.9 .032 .106 .088 6.5 

5E-40 45.5 .170 .174 .069 3.9 
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Table 7. Impact for steel 
III for Vehicle 

stringer bridge at Sections I and 
"A" 

Run Velocity 
(fps) 

Impact 

*a mb 

Frequency of bridge 
vibration (cps) 

3N-10 15.3 .092 ,008 3.64 

3N-20 26.6 .063 .076 6.3 

3N-30 41.4 0 .123 3.5 

6N-10 14.6 .039 .003 3.8 

6N-20 26.6 .015 0 5.9 

6N-30 39.8 .040 .003 3.1 

6N-I4.O 41.6 0 .061 3.7 

38-10 13.5 .080 .010 3.33 

38-20 26.1 .073 0 5.8 

38-30 39.5 .260 .112 3.3 

68-10 12.4 .018 0 3.7 

68-20 26.1 .052 0 5.6 

68-30 38.0 0 .110 8.6 

6S-40 55.2 .040 .118 4.1 
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Table 8. Impact 
IV for 

for steel 
Vehicle "A 

stringer bridge at Sections II and 

Run Velocity 
(fps) 

Impact 
Hb I?b 

Frequency of bridge 
vibration (cps) 

3N-10 14.85 .030 .180 3.7 

3N-20 27.66 •045 .102 5.1 

31Ï-30 38.95 .075 .148 4*8 

6N-10 13.19 .075 .140 3.85 

6N-20 27.19 .039 -- 5.8 

6ÏÏ-3O 39.5 .088 .159 3.2 

6N-40 51.35 .095 .138 4.1 

38-10 13.44 .058 .056 3.33 

38-20 26.4 .075 .092 7.7 

38-30 38.2 .151 .120 3.2 

68-10 13.25 .021 .125 3.33 

68-20 25.32 .068 .100 6.3 

68-30 41.4 .278 .168 3.45 

6S-40 53.3 •443 .228 3.45 
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Table 9. Impact for steel stringer bridge at Sections I and 
III for Vehicle "B" 

Run Velocity Impact Frequency of bridge 
(fps) Ia#e Ig^jp vibration (cps) 

3N-10 10.2 0 0 0 2.8 

3N-20 24.0 =030 .052 .060 5.5 

3N-30 33.33 .198 .062 .110 3.3 

3N-I4.O 44.1 .056 .087 .145 4.2 

6N-10 11.8 .048 .140 .145 2.9 

6N-20 26.54 .049 .042 .058 5.2 

6N-30 37.5 .100 .021 .238 3.2 

6N-40 43.15 .020 .062 .253 2.1 

3 S-10 8.51 .0016 0 .041 2.9 

38-20 24.22 .036 .035 .079 5.2 

38-30 42.85 .151 .121 .120 3.1 

38-40 55.55 .123 .083 .152 2.5 

68-10 7.01 .054 .040 .045 2.2 

6 S-20 23.6 .031 .0375 .050 5.0 

6S-30 41.2 .146 .105 .090 3.8 

6S-40 51.7 .059 .120 .069 2.3 
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Table 10. Impact for steel stringer bridge at Sections II and 
IV for Vehicle "B" 

Run Velocity 
(fps) :=b,e 

Impact 

"b.f Ivb,e ivb,r 

Frequency of 
bridge vibration 

(cps) 

3N-10 15.45 .073 .156 .260 0 3.4 

3N-20 26.65 .04 .002 -- — 6.7 

3N-30 45.0 .039 .00 .390 .087 3.6 

6N-10 13.69 .038 .106 .O63 .049 2.8 

6N-20 25.0 .00 .066 0
 

C
D

 
V

X
 

.079 5.5 

6N-30 37.5 .095 .088 .190 .003 3.6 

3S-10 12.45 .00 .038 .122 .100 2.9 

3S-20 26.1 .021 .026 .062 .065 5.8 

38-30 40.3 .020 .153 .048 .00 3.4 

38-40 55.8 .210 .218 .247 .210 2.5-5.0 

68-10 13.9 .062 .103 .050 .062 3.3 

68-20 25.4 .040 .029 .050 .050 6.2 

68-30 41.0 .096 .115 .062 .135 3.4 

68-40 54.8 .187 .266 .048 .238 2.5 
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Table 11. Impact for continuous concrete stringer bridge at 
Section I for Vehicle "A" 

Run Velocity 
(fps) 

Impact Frequency of bridge 
vibration (cps) 

2N-10 15-83 .018 3-3 

2N-20 28.1+0 .029 8.0-10.0 

2N-30 1+1.1+0 .01+8 12.5 

5N-10 U+.1+0 

cr> CO 0
 3.5 

£>N-20 29.00 .020 

5N-30 1+1.1+0 .00 6.1+ 

5N-1+0 51+. 00 

0
 

m
 
0
 
.
 3.3 

28-10 16.85 .143 3.5 

28-20 28.38 .00 5.5 

28-30 1+0.0 .108 --

58-10 15.9 .058 3.5 

58-20 32.02 .035 1+.8 

58-30 l+Mo .105 12*0 

58-1+0 51.15 .006 8.3-12.0 
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Table 12. Impact for 
Section II 

continuous 
for Vehicle 

concrete stringer bridge at 
"A" 

Run Velocity 
(fps) 

Impact 
Hb 

Frequency of bridge 
vibration (cps) 

2N-10 15.0 .131 4.0-9.0 

2N-20 26.8 .050 8.0 

2N-30 39.4 .00 4.5 

2N-1+0 54-5 = 100 4.5-9.1 

5N-10 14.8 .00 4.0-9.0 

5N-20 29.6 .00 — 

5N-30 42.0 .054 3.5 

5N-1+0 55.1 .020 4.5-9.0 

28-10 15.4 .109 3-33 

28-20 28.4 .051 — 

28-30 38.5 .00 7.7-7.3 

28-40 49.6 .049 4.5-9.0 

58-10 15.75 .100 3.33 

58-20 28.4 .069 8.0 

58-30 41.0 .038 3.8 

58-40 50.0 .00 4»5-9.0 
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Table 13. Impact for continuous concrete stringer bridge at 
Section III for Vehicle "A" 

Run Velocity 
(fps) 

Impact 
md IHb 

Frequency of bridge 
vibration (cps) 

2N-10 14.5 .10 .131 4.0-3.33 

2N-20 25.56 .00 

&
 

0
 # 10.0 

2N-30 39.1 .119 .078 12.0-17.0 

2N-1+0 51.6 .10 .00 9.0-16.7 

5N-10 14.60 .046 .091 3.45 

5N-20 28.80 — .00 — 

5N-30 41=00 .113 .091 3 «8-4-2 

5N-40 51.40 .160 .00 4.5 

23-10 16.3 .104 .131 

23-20 24.3 — .043 6.1-11.7 

2S-30 39.4 .00 .00 12.0 

23-40 50.4 .122 .10 4-5-9.0 

>3-10 — — — 

53-20 30.3 .00 .00 — 

53-30 49.90 .048 .011 4.0-4.5 

53-40 49.68 .071 .011 
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Table 14• Impact for continuous concrete stringer bridge at 
Section IV for Vehicle "A" 

Run Velocity Impact Frequency of bridge 
(fps) IV^ IVg vibration (cps) 

2N-10 13.20 .00 .02 3.6 

2N-20 24.20 — —  -™ 3.65 

2N-30 42.0 -395 

CO 0
 

-d
" 

3.75 

2N-40 55.0 .51 • 50 4.8-8.0 

5N-10 12.9 .107 .118 3.7 

5N-20 28.8 . 0 CD CD .093 7.9 

5N-30 40.6 .588 .541 3.7 

5N-40 54.0 .48 • 33 7.8 

28-10 16.5 .02 -- 3.55 

28-20 26.1 —  *  -- 3.6 

2S-30 39.0 .460 .267 3.7 

2S-40 49.6 .29 

3
 

CM 

7.8 

58-10 17.10 .079 .080 3.6 

58-20 29.20 .049 — 8.3 

58-30 39.4 .559 .437 3.7 

58-40 49.6 .175 .032 7.2 

\ 
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