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INTRODUCTION

In the design of highway bridges, the static live load is
multiplied by a factor to compensate for the dynamlc effect of
moving vehicles. This factor, commonly referred to as an im-
pact factor, is intended to provide for the dynamic response
of the bridge to moving loads and suddenly applied forces.
Many iInvestigators have published research which contradicts
the current impact formula (1, L, 17). Some investigators
feel that the problem of impact deals not only with the in-
crease in over-all static live load but that it is an integral
part of a dynamic load distribution problem (2l).

The current expanded highway program with the large
number of bridge sbructures required emphasizes the need for
investigating some of the dynamic behavior problems which
have been generally ignored by highway engineers. These
problems generally all result from the inability of a designer
to predict the dynamic response of a bridge structure. Many
different investigations have been made with the intent of
studying a particular portion of the overall dynamic problem.
The results of these varied investigations are inevitably
followed by a large number of unanswered questions. Ironic-
ally, many of the unanswered qusstions are those which are of

immediate ccncern in the design ¢ highway bridges, and this



emphasizes the need for additional research on the problem

of impact.

Nature of the Investigation

This investigation is a study of the dynamic magnifica-
tion of static load, commonly referred to as impact, resulting
from the vibrations produced by a vehicle traversing the length
of the bridge. More specifically, the purpose of this investi-
gation is to correlate the response of actual continuous
highway bridges under the effects of moving vehicles with
vibration theory. The problem is then to determine by means
of sxperimental data, the important parameters affecting
bridge vibration and thereby to develop a theoretical correla-

tion of these parameters.

Theoretical considerations

The fundamental problem of vibration consists of the
determination of the natural modes and frequencies of a given
vibrating system and the characteristics of the forcing func-
tion. Since the natural frequency depends on the restoring
force and mass of the system, it is evident then that the
size, stiffness, and initial conditions will determine the
natural mode of transverse vibratory motion of a beam. The
vehicle, which causes the forcing function, consists partly of

sprung mass and partly of unsprung mass. The actual vehicle
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1s a very complicated vibratory system but in this study its
effect has been simplified as much as possible. The effect of
the vehicle which has been assumed to predominate as the
forcing function for the vibration of bridges 1s the cyclical
repetition of the axles. This cyclical repetition is defined
as ﬁhe frequency of passage of the axles determined by the
ratio of the velocity of the vehicle to the axle spacing.

Experimental considerations

The experimental investigation was designed to determine
if the simplifications made in the theoretical impact analysis
are Justified in the application of this theory to actual
structures. In this experimental work the impact was deter-
mined at midspan of a single span highway bridge and in the
outer and inner spans and at the interior supports for three
types of continuous four span highwey bridges. The bridge
structures investigated are as follows:

1. A simple span bridge with six postensioned prestressed
concrete beams 100 ft long constructed to act compositely with
a reinforced concrete roasdway. The roadway is 30 ft wide with
a 3 £t safety curb on both sides.

2. A fully continuous structure, 220 ft long with four
aluminum stringers constructed to act compositely with a re-
inforced concrete roadway. The roadway is 30 ft wide with a 3

£t safety curb on both sides.
3. A fully continuous composite structure 240 ft long
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with four steel wide flange stringers and very simllar to the
previous bridge. The reinforced concrete roadway is 28 ft
wide with a 3 ft safety curb on both sides.

h. A continuous reinforced concrete roadway 24 £t wide
with a 2 ft safety curb on both sides supported by six pre-
tensioned prestressed concrete beams in each of the four
spans. The ends of the simple span beams were encased by a
cast in place diaphragm at the piers. The continuous roadway
slab, constructed to act compositely with the stringers, and
the pier diaphragm result in a relatively continuous 198.75 ft
bridge.

The types of bridges chosen provide a wide range of the
various parameters involved in vibration. The aluminum
stringer bridge is outstanding in that it allows a comparison
of the effect of a lighter material with a smaller elastic
modulus in a structure similar in its other aspects to the
steel stringer bridge. The continuous pretensioned pre-
stressed concrete bridge resembles the other continuous
bridges except that it is only partially continuous in its
action.

The mass per unit length is nearly equal for the con-
tinuous bridges. To investigate the effect of a variation in
the mass per unit length, the much heavier postensioned pre-
stressed concrete bridge was studied. Also these bridges pro-

vide a number of varlables in their structural qualities which
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may affect structural damping. This characteristic, the
damping, is important theoretically since it provides an
upper limit for the amplitude of forced vibration and might

determine the maximum amount of impact for that structure.



DEFINITIONS AND NCTATION

Definitions

Impact factor

The impact factor used herein, is the ratio of the dif-
ference between the dynamic and static effect of a vehicle to
the static effect. It is therefore the fractional increase in
the static live load, in this case the vehicle, which is re-
quired for the static live load to produce an effect equivalent

to that of the dynamically applied live locad.
Free vibration

Free vibration is that periodic motion which takes place
when an elastic system moves under the action of no external
forces or damping. The forces acting on the system during

its motion are dependent only on the motion itself.

Natural frequency

The frequency of a free vibration is called the natural
frequency of the elastic system. The elastic system used

herein is thc bridge structure 1itself,



Ioaded natural frequenc

The loaded natural frequency is the frequency of free
vibration of a system, in this case the loaded bridge structure,
when the mass of the loading vehicise is included in the
system. This frequency is a function of the position of the
vehicle.

Forcing function

The forecing function is an externally applied time-
dependent disturbance acting on the structure to produce a

time -dependent motion.
Forced vibration

When the vibration results from the application of an
external time-dependent disturbance it is called a forced

vibration.
Modes of vibration

An elastic system can generally perform vibrations eof
different modes. The mode of vibration is the shape of the
vibrating beam and is classified by the number of nodes sub-

dividing the length of the beanm.



Resgonance

When an elastic system is acted upon by an external

periodic forcing function having the same frequency as a

natural frequency of the system, it s 1n a state of

resonance.,

f(x,t)

L‘"N‘IQNHGQ

=

3

Noteation

Constants; svaluated by initial conditions
Modulus of elasticity

Natural frequency in cycles per unit of time
Loaded natural frequency in cycles per unit of
time

A function of position and time

Acceleration due to gravity

Moment of inertia

Frequency parsmeter, 4/pam/EI

Kinetic energy

Ratio of span stiffnesses, E2I2L1/ElIlL2
Length of span

Mags of the load

Mass per unit length of span

Number of cycles

Any whole number

Damping coefficient
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Oscillating load effect of a smoothly reolling
load
Potential energy
Natural circular frequency of undamped vibration
Natural circular frequency of undamped vibration
of the loaded structure
Ratlo of the horizontal coordinate to the
length of the span, x/L
Spacing of the vehicle axles
Stress
Time
A function of time
Velocity
Weight of the load
Frequency of the forcing function
Horizontal coordinate; a distance measured in
the direction of the length of thse span
A function of the horizontal coordinate
Vertical ordinate; deflected displacement due to
the static live load
Vartical ordinate; deflected displacement due to
the dynamic live load
Phase angle
(coth KL - cot KL)
(cosech KL - cosec KL)
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HISTORY

Bridge Vibration

The problem of bridge vibration came of age when heavy
loads and high speeds became prevalent in railway transporta-
tion. In 1847 a British Royal Committee was appointed to in-
quire into the conditions to be observed by engineers in the
application of iron in structures exposed to violent concus-
sions and vibrations. The committee conducted an extensive
series of laboratory tests at the Portsmouth dockyards (23).
A member of the committee, Professor R. Willis, attempted to
simplify the analytical work by omitting the inertia of the
bridge and considering only the mass of the moving load. This
allowed Professor Willis to consider the deflection of the
beam to be proportional to the force exerted on the beam by
the moving ioad. The deflection could then be calculated by

the equation of static deflection:

Rx*(1-x)® (1)
=
T = T3EIL
whore the force R exerted by the moving load is

g at2
The equation of the path of the point of contact of the

rolling load with the beam becomes
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¥4 = P(1 - —4}) (3311. > (3)

An exact solution of this equation was obtained by G. G.
Stokes (19) by means of a power serles. However, an approxi-
mate solution csn be obtained by substituting the equation of
static deflectiorn at zero velocity into the right hand side of

this equation., Accordingly, the dynamic deflection is

2
= v _PL

wnere the additional term in the parentheses is the impact
factor and is ususlly very small. Therefore the dynamic
effect in this case 1s negligible.

The next theoretical approach was made by considering the
mass of the bridge and disregarding the mass of the traversing
load. This was investigated by A, N. Kryloff (12) in 1905 as
the prohlem of a constant force traversing a single span beam
with a constant velocity. In 1922, the problem of a pulsating
force was investigated by Professor S. P. Timoshenko (21), and
the same result was later reached by a somewhat different
method by C. E. Inglis (10).

The first published solution considering vhe mass of the
load and the mass of the bridge was by H, X, Jeffcott in 1929

(11). The general eguation was written

mﬁ% R m;;g = 2(x,%) - —E'—’- —-5- (5)

where y! is the deflection under the load. An iteration
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procsdure was used to obtain a solution in which it is implied
that the effect of the acceleration force is always small
compared with that of the applied load. The first approxima-
tion is found by disregarding the acceleration term and
solving the equation. The next step is to substitute the
first solution into the original equation in the previously
disregarded term and solve the resulting equation. This
process is shown to converge to the exact solution for a par-
ticular case. However, the general convergencs of the metheod
was not discussed. Since then H. Steuding (18) has shown that
in some cases the iteration method used by Jeffcott does not
converge.

A very comprehensive study was presented by Frofessor C.
E. Inglis (10) in 193} when he published "A Mathematical
Treatise on the Vibrations in Railway Bridges". This very
complete study, supported by experiments, considers the
various types of railway loadings on simple span bridges. Ths
traversing load is expressed in the form of a harmonic series.
The convergence of the series is discussed and it is found that
only the first two or three components have any real practical

importance.

Using the well known differential equation of motion

1% 4+ nd%Y = 2(x,8). (6)
dxu dtz

Professor Inglis uses the forcing function
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1 =0
2w r T
£(x,t) = F E sini-'f-?' aini Lx (7)
i=1

for the case of a moving force of constant speed and magni-
tude. This function is equivalent to a series of stationary
but alternating sinusoidal loads. The solution of the dif-
ferential equation for this forcing function is

2
23 i= P - siolf 2 o1nl 7 %8
- X -
Y= e stn=—p= | Jh 5,7 27T B 122 (8)
i=1

where a = ,/%%

and U= %%?’o
The solution was also found for the case of a moving alter-
nating force and a moving alternating force associateéd with a
moving mass. A solution of the type

y = £(t) sinlE (9)

was used in all cases. Furthermore a hammonic series was used
to represent the loads in all the solutions and in some solu=-
tions only the primary component of the harmonic series was
considered. These simplifications in the analytical work were
justified by Inglis (10, p. ix) because "... the main object
of this treatise is the analysis of the oscillations due to
harmer-blows and the evolution of formulae for computing dyna-
mic deflections and the bending-moments and shearing-forces

induced thereby"., This treatise rmarks a very important



1

turning point in the engineering approach to the problem ol
impact.

In 1937, A. Schallenkamp (16) presented a rigorous solu-
tion of the problem of bridge vibration considering the mass
of both beam and load. The lateral vibration produced by the
external disturbing forces are represented by a series, which

for a beam with simply supported ends becomes

1=
yix,b) = E qg (t) sindlE (10)
i=1 ‘

Using the expressions for potential and kinetic energy
together with the equations of Lagrange, Schallenkamp obtained
a nonhomogeneous second order linear differential equation in
terms of qq(t) (1=1,2,..5). The solution of this problem
seems to indicate that the contribution of the mass is of
relatively little importance in bridge vibration.

In 1955, the problem of bridge vibration was studied by
H. S. Suer (20), who assumed fhat the bridge, again a simple
span, could be represented by a single degree of freedom
system. He therefore considered only the first mode behavior
of the bridge. In addition, the vehicle was treated as a
gingle degree of froedom system. Thus a solution was obtained
in the form of two simultaneous differential equations in
terms of the deflection of the bridge and the absolute posi-

tion of the sprung mass and their derivatives. These equations
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were then solved by a digital computer. Excellent experi-
mental cerrelation of this solution was obtained by choosing
the initial position and velocity of the mathematical model of
the vehicle to agree with the experimental load variation
curves of the actual vehicle.

The forced vibration of a continuous two span beam has
been investigated by G. Ford (5). The load traversing the
beam was simplified by neglecting its mass. To 1desalisze the
assumptions made in the analysis, a model was bullt which had
negligible damping, complete freedom to rotate at the supports,
and a uniform cross section. The main purpose of the investi-
gation was to determine the number of natural modes which must
be considered in a theoretical study in order to obtain a fair
agreement with observed results. The snalytical procedures of
Timosherko (21) and Schallenkamp (16) were used and the shape
functions were obtained for the various imdividual modes of
vibration. The summation of these components for all possible
modes was then considered on the basis of superposition, and
the experimental correlation was made.

Many experimental studies have been made in attempting to
correlate the dynamic action of a bridge with theory or to try
and 1solate the most significent parameters in this action. 4
very important contribution in this respect is the Highway
Research Board Bulletin 124. In this bulletin Biggs and Suer

(1) have reported some of the experimental tests which
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provided a basis for the analytical work of Suer (20)
described previously. The significance of the various

dynemic effects on the vibrations of highway bridges was in-
vestigated by Professor G. F., Scheffey (17). Again the

effect of the smoothly rolling mass was found to be negligible.
Scheffey (17, p. 29) concluded that ". . . the effects of the
oscillating gingle load was found to become more and more pro-
nounced as the frequency of the span approaches the frequency
of the vehicle", and that ". . . the superposition of the
effects of a number of axles in phase is a most difficult
problem to treat quantitatively on the basis of presently
available data", A comparison of the meaaured deflections and
stresses in two continuous plate girder bridges was reported
by R. CG. Edgerton and G. W. Beecroft (4). This experimental
investigation concluded that the effect of the roughness of
-the bridge deck, greatly influenced the measured impact. J.
M. Hayes and J., A. Sbarounis (8) studied the vibration of a
three span continuous I-beam highway bridge. The effect of
the load on the natural frequency of the bridge and the

effect of the composite action of the I-beams are presented in
this study. The various vehicles used in this experimental
program had quite a varied axle spacing. The recorded ampli-
tude of vibration seemed to correlate very well with this
parameter. The correlation was made, assuming the bridge to

have a single degree of freedom, with impact as a function of
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the amplification factor normally associated with forced vi-
brations. G. M. Foster and L. T. Oehler (6) attempted to
correlate the dynamic deflection with the stringer depth to
span ratio for a number of simple span roller-beam and plate-
girder bridges. The damping coefficients of these bridges and
of a continuous plate girder bridge are presented. A review
of the analytical and experimental model studles on the high-
way bridge impact problem at the University of Illinois was
presented by T. P. Tung; L. E. Goodman, T. Y. Chen, and N. M.
Newmark (22). The analytical study was made by a numerical
step-by-step integration of the equations of motion. The
study made by Tung et al. includes the effect of the roadway
unevenness and camber and also the unsprung part of the load.
‘fhe dimensionless parameters which directly influence the
calculations were reduced by some simplifications to five.
Weight Parameters:

Wt., of unsprung part of vehicle
Ry = WE. of bridge

Wt. of sprung part of vehlcle
Ry = Wt. of bridge

Wt. of wvehicle
R= Wt. of bridge

Stiffnass Parameter

Natural freguency of vehicle

© % Natural frequency of bridge
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Speed Parameter

Velocity of vehicle
& = 2(Length of span)(Natural frequency of bridge)

A good correlation was made of the model study results of a
single axle vehicle traversing a single span bridge with the
analytical solution obtained by a digital computer. A.
Hillerborg (9) has shown that using only two of the five
dimensionless parameters considered by Tung et al. the third
weight parameter R and the speed parameter a, the impact of an
idealized unsprung single concentrated mass can be predicted
by method of Inglis (10). The theoretical dynamic increment
or impact is shown for both moment and deflection, but the
experimental correlation is shown only for moment.

It 1s interesting to note that of the many facets to the
problem of briage vibration, the damping constant of the
bridge is nearly always neglected in the simplifications of
the analytical solutions. This is done even though the effect
of damping will limit the maximum amplitude of stress or im-
pact when the resonance condition is obtained between the
foreing function and the structure. For a continuous bridge
this resonance condition might be obtainable by a single un-
sprung mass traveling at a speed in which the application of
the load in each span corresponds to the natural frequency of
the structure. A condition of resonance is certain to occur

when the mass is mounted on springs. This may not occur often
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in practice because of the difference in natural frequenciles,
but the situation should not be overlooked. A condition of
resonance is also obtainable when the frequency of passage of
the axles of a vehicle correspond to the resenant vibratory
motion of the structure. This problem does not readily lend
itself to analysis by the often used Inglis (10) method for
moving loads of constant magnitude, and yet the problem is

not one of a moving altermating load. This is the problem for
which a theoretical analysis has been derived in this investi-

gation and correlated with experimental results,

Impact Factors

In 1859 August Wohler began a now celebrated series of
tests in which steel and iron specimens were subjected to
alternating or varylng stresses. It was found that fallure
ocourred at a much lower stress than would have been observed
for a static test. This emphasizes the problems inherent in
dynamic loading. These results started the subject of the
fatigne of metals. The first of the fatigue stress formulas
was devised to fit the experimental data of Wohler. This rule
was given by the formula (7)

Fail £ =s |1+ SytSe| Minimum stress in member
allure stress = 5S¢ Se / Maximum stress in member

(11)

where Sg = endurance limit and S, = static ultimate stress of
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the material. The endurance limit was considered as the
maximum tensile stress for which the material could resist an
indefinite number of repetitions. The results of Wohler's
tests were used by bridge engineers to formulate the
allowable stresses in members subjected to varying stresses.
The resulting formulas were intended to reduce the allowsble
stresses to account for the effect of fatigue. The actual
formulas used were derived from this rule by substituting a
value for S, and S; and incorporating a suitable factor of
safaty. The formulas was intended to reduce the allowable
working stress as the stress range over which the material is
worked increases. Thus the important part of this type of
formula is the controlling varisble which 1is the ratio of the
live loed stress to dead load'stress. Because the reduction
of stress using this type of formula involves a trial-and-
error procedure in the design of members, a simplification was
evolved which applies the controlling variable to the loadings.
Therefore instead of reducing the stress to account for the
effect of fatigue, the loading was incressed. This was done
by first simplifying the controlling effect as a percentage
based on a ratio of live load stress to the live load plus
dead load stress, or

S
L *5p

S

where SL is the live load stress and SD is the dead load
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stress. This can be rewritten as

1
1+ SD/SL

where the ratio Sp/S; is considered a function of the length

for similar types of structures. This formula, with a wvalue
of L/300 for the function of length, was introduced in 189}
and was very widely used in the United States, Canada, Great
Britain, and India to increase the static load and therefore
to account for the fatigue effect of the variation of stress
due to repeated loads. The repeated load provision has since
become accepted as a method of providing for live load impact
and is called an impact factor. This error in terminology has
resulted in sbuse and confusion by engineers of a rule in-
tended as a precaution against fatigue failures. In this in-
vestigation, the impact factor refers only to the effect of
the load and is specifically a function of the amplitude of

forced vibration of the bridge.



22

THEORETTCAL INVESTIGATION

Free Vibration

General theory

One important parsmeter in the response of an elastic
system to the action of a forcing function is the ratio of the
frequency of the forcing function to the natural frequency of
free vibration of the system. Therefore, in this study of the
forced vibration of highway bridges, the natural frequenciles
and their corresponding modes of vibration will be considered
first.

The differential equation governing the free vibration of
a beam of constant E, I, and m is found by using the elementary

theory of mechanics. This equation 1s

EI%—L% = «force per unit length (12)
x

where the force in this case results from the inertial forces
and is a function of both x and t. Then, using d'Alembertts

principle for the loading

-

.52
force per unit length = m'};;t . (13)

Combining these results, the differential equation of motion

for the lateral vibraticn of a beam becomes
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0 52
EI~é—l:E+m-g;§=0 (1)

which must be satisfied at all points along the beam. The
solution of this partial differential equation may be assumed
to be of the form

v = X(x)T(%). (15)
Then Equation 1l can be written as
2
makx -1 (16)

mX ;’I T dt
Since X is only a function of the position and T is only a
function of time, the left hand side of Equation 16 can be
equal to the right hand side if and only if they are both
equal to the same constant. In order for T to be harmonic,
the constant must be positive, say +p2. Therefore the
ordinary differential equations in X and T are

ﬂ-x‘*x:o (17)

axt

2

-d—%‘ + pzT = 0 (18)
at s

where the frequency parasmeter K = %/ %‘ o« The natural fre-

quency of vibration in cycles per unit of time is obtalned by
dividing the natural circular frequency p = K2 % by two pi.
In terms of the frequency parameter K, the natural frequency

is
2
—R- S EL (19)

f= =z T - .

2 2 m
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The value of K is found in the solution of the shape function
X which in turn is dependent upon the conditions on the span.

The general solutions of Equations 17 and 18 are of the

form
X =P 3in Kx 4+ C cos Kx + ¥ sinh Kx + D cosh Kx (20)
T = A sin pt + B cos pt (21)

where C, D, F, H are constants to be determined by the geo-
metrical boundary conditions and 4 and B are constants to be

determined by the initial conditions.

Gontinuous beams with constant E, I, and m

The method used here in the general theory of the lateral
vibration of continuous beams is an extension of the original
work of E. R. Darnley (2) on the vibration of rotating shafts.

The determination of the natural frequency of multi-span
beams is found by using Equations 20 snd 21 with the conditions
at the ends and at the supported intermediate points. The
conditions on X result in a shape function for each span and
the conditions of time result in a time function T which is
the gsame for all spans. The conditions at the ends and at the
intermediate supports of the continuous beams are the following:

1. At the simply supported end, tge deflection and the
bending moment ars zero; y = 0, and EI%;% = 0.

2. At an intermediate support the deflection is zero, and

the slope and the bending moment are continuous; y = 0, and %%

2
and EIQ—% are continuous.
dx
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Taking the origin of coordinates at the left end of each
span, the general equation giving the value of the shape func-
tion for the nth span, considering the deflectlion at the left
end equal to sero, will be of the form

Xy = Cplcos Kx - cosh Ex;) + Fysin Kx;, + H sinh Kx . (22)

The equations expressing the end condition of a zero deflec-
tion and the continuity conditions of slope and moment at the

interior supports are respectively,

Cplcos KL - cosh KL) + Fysin KL, + K sinh KL = 0 (23)
=C,(sin KL + sinh KL ) + Fcos KL + K cosh KL,
= F.n-i-l + nn+l ()
Cplcos KL, + cosh KI,) + F,sin KI, - H sinh KL,
= 20p41 o (25)

Adding Equations 23 and 25 results in

Cpecos KL+ Fysin KL, = C (26)

n+l
and subtracting these squations results in

Cpcosh KL, - H sirh KL, = Cpyy - (27)
Subtracting Equation 26 from Equation 27 and dividing by the
coefficients of F, and H, yields
F, + B, = C,(coth KL, - cot KL) - C, ,(cosech KL,

- cosec KL,) (28)

This operation assumes that sinh KL and sin KL are not zero.
This is important in applying the following results, because
the fundamental freguency of a simple span or a continuous

beam of equal span length is KL = 7T, in which case sin KL is
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Zero.
Using the notation:
coth KL, - cot KL, = Q{n (29)
cosech KL, - cosec KL, = }Lh (30)
the following equation is obtained:
Fp + Hy = Cn¢n"cn+1A}Ln * (31)
In a similar manner, the equation for the next intermediate
support can be written:

For1 + Hppa = Cpey dn-t—l = Cheo q//;+1 . (32)
Combining Equation 32 and Equations 26 and 27 in terms of Fj
and Hn, respectively, ylelds:

Cn+1 = Cpeos

sin KLn

-G + G,.cosh KLn
n+1l n -
+ cosh KI"n - cn+1 gﬁn-l-l

sinh KLn

-Cn(sin KL, + sinh KLh) + cos KLn

- cn+2‘2/;+l * (33)
Using the notation given in Equations 29 and 30 and simpli-
fying gives the general solution for the differential equation
of the shape function for the n+l interior support. This

equation can be written as

c, Fa = Coup( P+ ¢n+1) +C ., %n-l—l =0 (3)

Ve

for each intermediate support, thus giving a system of equa-
tions for a continuous beam of n spans. The froquency equa-

tion may be found, as shown below, by forming a determinant of

the coefficlents.
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Three span bridge. The determinant in the case of a

simply supported three span continuous bridge is given below

%1*512 y/z
7& 5&2*553

d 2
= ( l+¢2)(é+@/3)-%2 =0 . (35)
For the case of equal end spans, this reduces to

551*752'“":%2- (36)

The first root of this transcendental equation was determined

and evaluated.

or

for various ratios of lengths and the results are shown in
Figure 1., The curves shown in this figure can be used to find
the value of K, the frequency parameter, for determining the
first mode of natural frequency for a three span structure
with equal end spans. GCaution should be used, however, be-
causgss extrapolation beyond the limits of the graph could be
erroneous., Further, it should be pointed out that the rela-
tionship expressed in the figure 1s not linear as some writers
seem to indicate (15). Moreover, if the ratio of Ll/L2 be-
comes less than 0.5, that is, if the middle span length ex-
ceeds twice the outer spran length, the possibility of this
mode of vibration occurring decreases, and instead & higher
mode with a nodal point at the middle of the center span

probably would occur.
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Four span bridges. The continuous bridges studied experi-
mentally have four spans. The application of this theory to
four span bridges will be studied for application later to the
experimental data. The determinant in the case of a four span

bridge 1s given below and evaluated,

¢+ b, % 0
7/5 ¢a* ¢3 7@
0 % B, + &

s (d e D, 0 b, + dh)-»)%uﬁl;dan

Fadis do=o. (37)

Once again considering a symmetrical structure in which the

span lengths are simplified by L1 = Lh and L2 = L3 as generally

used to help optimize the distribution of bending moments in

highway bridges, the frequency equation degenerates to
¢1 + ¢2 =0 (38)

(F+ B g, - FEeo. (39)

Equation 38 represents a mode of vibration of a four span

and

bridge which is antisymmetrical about the center support and
the roots of this equation give the odd modes of vibration of
ths structure. Equation 39 represents a mide of vibration of
a four span bridge which 1s symmetrical about the center support

and the roots of this equation give the even modes of vibration
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of the structure. In general, for an interior span of a con-
tinuous bridge, the odd modes correspond to the modes of vi-
bration of a simply supported beam, and the even modes
correspond to the modes of vibration of a fixed end beam. For
the end spans of the continuous beam, the odd modes are as
before but the even modes of vibration correspond to the modes
of vi.ration of a beam with one end fixed and the other end
simply supported. The first root of Equation 38 has been
determined for various ratios of lengths and the results are
shown in Figure 2. By mesans of this figure the value of KL
and hence the first mode of natural frequency can be obtained
for any ratio of lengths, within the limits of the curve.

The roots of the frequency equations are obtained in the
form of KL, where L is the span length. For the general case,
as in Fignres 1 and 2 which consider only span ratios, it is

more convenient to determine the natural frequency by

(KLn)2 EI
f= Eﬁ¥£§“— - (40)

vhere KL is a root of a frequency equation. The value of KL
can be obtained from Figure 1 or Figure 2, depending on the
number of spans in the structure. The two curves shown in
each figure give identical values of K since each value must
be divided by the respective length L. An observation can be
made here using the first mode of natural frequency curves in

Figures 1 and 2. It 1s interesting to note that reducing the
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ratio of lengths has the effect of reducing the value of K if

the sum of the lengths remains the same. Thus it 1s seen that
for any given total length, considering E, I, and m constant,

the more irregular the span lengths become, the lower the

natural frequency of the structure becomes.

Continuous besms with variable E, I, and m

The previous analytical work has been carried out under
the assumption that E, I, and m are constant throughout the
length of the bridge. However, this may not be true. Iu the
usual continuous highway bridge structure the section of the
longitudinal stringers i: increased by the composite action at
the middle of the spans and by the cover plates at the interior
supports. In this type of highway bridge the moment of inertia
of the stringers and cover platea at the interior supports is
approximately the same as the moment of inertia of the com-
posite slab and stringer at the middle of the spans. This
leads to an often used simplified analysis of live load effects
which assumes that the moment of inertia is constant throughout
the length of the bridge. This assumption has been shown to be
Incorrect for the few contiiuous highway bridge structures
comprehensively studied experimentally (15). Moreover, the
variation in the =cment of inertia is dependent upon the un-
known smount of composite action exhibited by the slsb and

stringer. For this reason, variations in the moment of inertia
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along the length of the bridge, due primarily to cover plates
at the interlor supports, will be disregarded and the moment
of inertia at the center of the spans will be used in the
enalytical work. This simplification has some merit because
of the way in which the inertial forces and the fundamental
mode of vibration occur.

In the lateral vibration of a beam, the largest inertia
forces will occur near the center of the span. Moreover, when
the continuous bridge is vibrating at its first mode of vibra-
tion it has a point of counterflexure at or near the supports.
Thus the effect of the difference in the moment of inertia,
as a measure of the stiffness, at or near the supports would
have a very slight effect on the restoring force of the bridge.
Thus the variations in the moments of inertia near the sup-
ports will have a minor effect on the first mode of vibration.

The above discussion concerns the variation in the moment
of inertia in any particular span. If, however, the variation
from span to span occurs due to a changing slab thickness or
changing stringer size, the restoring force in each span might
be very much affected. This problem usually occurs due to an
abrupt change in the rolled section at a splice or an sbrupt
change in the size of flange of a built-up plate girder.

This problem will be studied analytically by assuming a
constant but different moment of inertia and mass per unit

length in each span. The mathematical model will be set up
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with the origins at each end and at the center of a symmetrical
four span bridge. The problem reduces to the solution of
Equation 20 for each span and Equation 21 for the entire
structure. The value of p which yields the natural frequency
will be the same for both spans, however the parameter K will
differ for each span. Therefore, the frequency parameters are

written

2
KI:‘LL = AP ' (41)
E I

and

é:’_”afi. (42)

E212

The general solutions of the shape function equations for each
span are
Xy = Flsin Kixy + Gycos lel + Hlsinh lel
+ Dycosh Kyxg (43)
cos K. x, + H,sinh K _x

2 272 2 22
+ DZCOSh K2X2 ().I.LI.)

X2 = Fzsin K2x2 + C
Applying the conditions that the ordinate is zero at the
origins, Equations L3 and ljy give

!
Xy = Gy sin K11 (45)

sin Koxo sinh K2x2 (46)

1
X5 = C, sin K,L
a” 2 22 §in KL, simh KL

The continuity conditions of bending moment and slope are,
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2 ax
E; L, g_él EyI, __Eé and ggg %;l . Applying the equality
dxl dx2 2

of bending moments gives

rm KyIy | sinh Kyly } EpT,K8C3sin KoLp| sin Kolo 4 sinh KZLZ}

sin KL, sinh K,L, | E;i;K2C]sin KyL;|sin KL, sinh Kyl,

or

E, I ch 18in KL, = E212K c! osin K Ly. (L7)

Then equating the slopes and substituting for cé from Equation
47 yields the equation
[cos KjIy _ cosh KlLlJ = -ElIlKlros KoL, cosh KZLZ] (18)
sin KlLi sinh K1L1 E212K2 sin K L2 sinh K2L2

By reducing and using the previous notetion in Equations 29

and 30, this equetion becomes very similar to the previous
frequency equation for a symmetrical four span bridge. This
equation becomes
524 I T L 55
1l

E,IE, 2

. (49)

Substituting the value of Kl and Ké from Equations L1 and
42 into Equation 49, yields

(50)

If the span stiffnesases and masses per unit length are the

same, the factor
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3
4/ m,E1)
reduces to unity and this equation becomes exactly like the

previous frequency Equation 38.

g-. 4. (51)

It 1s seen therefore that the frequency equation derived,
which includes the effect of a constant but different E, I,
and m in adjacent spans, is applicsble only to the odd modes
of vibration. This, of course, includes the most important
which is the first mode.

Since relatively small differences in the mass per unit
length of adjacent spans are usually found in practice and be-
cause the mass ratio only affects the factor by the fourth
root, this effect will probably be very small. Thus the mass
ratio was taken as unity and the effect on the natural fre-
quency of the different stiffness ratios, of the outer and
inner spans of a symmetrical four span bridge, was obtained.
The effect 1s shown in Figure 3 by plotting the frequency
parameter against the ratio of stiffness.

Live load effect on natural frequency

The natural frequency of vibration varies as the position
of the mass of the live load changes in each span. The effect
of adding this concentrated mass is a reduction in the natural

frequency of the structure by an smount depending on the
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position of the mass. This change in natural frequency will
cause a variation in the coincidence of the frequency of the
forcing function and the frequency of the bridge.

It 1s important, therefore, %5 study this change in fre-
quency by a procedure in which the effect of the position of
the vehicle can be easily determined. A method well adapted
to this type of study is the energy method. This method is
based on the law of conservation of energy which requires
that, provided damping is negligible, the sum of the kinetic
energy KE and the potential energy PE must be a constant.

Thus
KE + PE = constant. (52)

Because of the periodicity of vibratory motion, the displace-
ment will be a maximum when the velocity is zero and the dis-
placement will be zero when the velocity is a maximum. Since
the sum of the energies is a constant, Equation 52 can be

written

kE “EE . (53)

In a flexural vibratory system with simple harmonlic motion the

maximum potential energy of the system is given by

y (F d2X>2
=, = (@) - s

and the maximum kinetic energy of the system is given by

L
.2 2
KB o™ 2P JC m (X) dx (55)
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where the simple harmonic motion is defined by
¥ = X sin(pt - ). (56)
By equating the maximum kinetic and rotential energies, thé

resulting energy equation for the natural frequency 1is
L 2'>2
EI dx
(S
p = =T, .
/[’ m X2 dx
(+]

When the vibratory system consists of a number of spans, the

(57)

kinetic and potential energies are determined for the entire
structure. The resulting energy equation for the natural

frequency of vibration becomes

Ih 2 Lo 2
2 -£ ElIl (g;%‘>ldxl + fo EZIZ <ix%)2 dx2 + o 0o ¢
e -

£ mlld.xl + [ m2X2 d.x2 + o 0 0

where the subscript denotes the span for which the function

applies.

The application of this relationship is made by assuming
a configuration of the vibratory system. This configuration
is then used to determine the kinetic energy and potential
energy of the system and therefore to find the natural fre-

quency of vibration.
The solution obtained by this method will always be

higher than the exact solution. That 1s, as the assumed shape

of the vibratory deflection curve approaches the actual shape
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of the vibratory deflection curve, the value of the natural
frequency will decrease as it approaches the exact value. For
this reason the energy solution is called an upper bound

solution.

The approximate shape of the vibratory deflection curve
1s often assumed to be the same as the dead load deflection
curve. The application of this assumption to an indeterminate
structure might be erroneous. This would result because the
static effect of the dead load of a continuous beam causes a
downward deflection in all the spans. However, in the case of
a vibratory motion, alternating deflections of the spans will
occur for the fundasmental mode of wvibration. If the live load
deflection curve is used, instead of the dead load curve, the
curve becomes different for each position of the load. This
complicates the analysis and does not increase the accuracy of
the solution since the effect of the mass of the beams has
been omitted. To overcome the lack of a known vibratory de-
flection curve, an arbitrary polynomial solution could be used
with the degree of the polynomial depending upon the conditions
available for the determination of the constants. This pro-
cedure has been applied by T. Poschl (1) to the vibration of
syrmetrical single span rigid frames. The work of Poschl can
also be extended for the effect of a concentrated mass at the
center of a symietrical three span continuous beam.

Using a similar procedure for the case of a symmetrical
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four span continuous structure, the general polynomial deflec-
tion curves, iIn terms of the shape function X, assumed for the

outer and imnner spans are respectively,

X

1= L(a + Br+ GrZ + Dre + Fru) (59)

X5

LQ(A' +B'r+c's s D'r) (60)
where r 1s taken as the dimensionless ratio xl/Ll for the
first span and xz/Lé for the second span. Then the following
conditions are used for the evaluation of the constants. The
notation y;(1) is the deflection in the first span at r = 1
and a prime indicates a derivative with respect to x.

Deflection conditions:

71(0)=0 y1(1)=0 72(0)=0 yF,(1)=0 y,(2i=0
Continulty conditions:

y1(1)=y5(0) EI;¥';'(1)=EL,y';(0) EIy;'(0)=0

Symmetry conditions:
7,(0) = y3(2).

These conditions will restrict the vibratory deflection curve
to an alternating movement in adjacent spans which 1is anti-
symmetricai about the center of the structure. The symmetry
condition imposed on the interior span could have been

EIy5'(1) = 0

and a similar result would have been obtained.
The spplication of the end conditions to the polynomial
for the first span ylelds the following equations
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Yl(O)'—'O A=20
EI;y;'(0) =0 C=0
y1(1)=0 B+D+E=20

Applying the conditions on the polynomial assumed for the

second span glves

v2(0) = 0 A' =0

72(1) = 0 B'+¢'+D =0
72(2) = 0 2B' + ¢t +8D' =0
The continuity conditions give the following
y3(1) = yé(O) B + 3D + LE = B'
72(0) = y3(2) ye' + 120" =0
1y - 1 - L
E,I,7, (1) E212y2 (0) 3D + 6E - kC 0
where
E,I,L
k= 2727
EIIlLZ

All the coefficients were found in terms of D', The
resulting vibratory deflection equations have the arbitrary

emplitude constant D' taken as unity. These equations are

X

i

Ly [~(24k)r + (430023 = (21r2)rt ] (61

X = Ly | 2r - 32% + r3 | (62)

Substituting these equations and their derivatives into the

energy frequency equations yields
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-
EpI, rlﬁ—e’ + 1.2 + 0.6k) = 1

@ mlq

=3 (124 + 95k + 19k2) + 48
m, 13

p2 = 7560 (63)

—
—

The natural frequency can be obtained by dividing the natural
circular frequency p, from Equation 63, by two pi. In this
operation only the energy of the structure was considered,
therefore the solution sheculd spproach the natural frequency
with no live load. Comparing the values of natural frequency
obtained from Equation 63, for different ratios of lengths,
with those of the exact method (Figure l) suggests that a
better assumption for the deflection curve might be made.
Obtaining a better polynomial solution is doubtful becausa the
elimination of the coefficients is dependent upon the number
of conditions imposed on the vibratory structure, and a
minimum number of conditions were used on the previous poly-
nomials. If a higher polynomial is used, the greater number
of condivions required for the determination of the coeffi-
cients would, in general, restrict the deflection curve even
more thus increasing the error in the solution. For this
reason a different type of dynamic deflection curve might not
only improve the accuracy of the natural frequency but also
provide an insight into some types of forcsd vibration analysis
which require assumptions as to the shape of the deflection

curve, The seccnd deflection curve chosen for this case 1s a
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sine function. The equations are

X; = 4 sin nyxy (éh)

X, = B sin nyx, (65)

Taking the origins of coordinates at the left hand end of each
beam, the constants are evaluated using the following
conditions.
Deflection conditions:
y,(0) =0 ¥o(0) = ¢ 7i{Ly) =0 3o(L,) =0
Continuity conditions:
y1(k) = 75000 E L3 "(L) = E,Ly)'(0)

The aspplication of these conditions ylelds the following

equations:
v1(Iq) = 0 ny = 7771'1
¥2(L,) = 0 n, = /L,

y1(Ly) = 35(0) A = =(Ly/L,) B .
Using these results the vibratory deflection equations with

the amplitude constant B taken as unity become

Xy = '(Li/Lz) sin 71:1 (66)
X, = sin =2 (67)

Ly

Substituting these results obtained from an assumed sine curve

and their derivatives into the ersrgy equation gives
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F" —/
E.I ElIlLZ . 1
2 1 EIL
p- = th -g—% 2721 (68)
m2L2 L 3m
Ly m
(L / mp i

from which the natural freguency can be found as previously
noted. A comparison of the natural frequency as determined by
the exact solution and by both energy methods, the polynomial
solution and the sine function, are shown in Figure L for
various ratios of lengths but constant stiffness and mass.

A comparison of the effect of the variation in stiffness
from span to span as determined by the exact equation and by
two energy equations is shown in Figure 5. The ratio of mass
was taken as unity.

It has been found that the deflection curves derived from
the sine function give good results for the unloaded natural
frequency when the ratio of lengths becomes irregular. The
sine curves 2lso have a tendency to yileld an even better
answer when the stiffness of the longer span increases in
proportion to the stiffness of the smaller span for the more
irregular lengths. This correlation indicates that the assumed
sine curve should give better results than the polynomial
curve when the live load is placed on the span. This 1s
especially true if the mass of the live load is small with
respect to the mass of the bridge. In the usual highway bridge
this 1s often the case as shown by the bridges tested in this
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study.

The effect of the live load maass is easily accounted for
in the energy frequency equation. The equation was found by
equating the maximum potential energy to the maximum kinetic
energy. The maximum potential energy is a function only of
the deflection curve and therefore the additional live load
mass does not change the numerator of the equation. The maxi-
mum kinetic energy, however, will change considerably as the
maximum velocity of the live load mass changes. The velocity
of this magss depends on the position of the mass in the span
and on the deflection curve. Thus, for any one deflection
curve the denominator of the frequency equation will change,
for the addition of live load, by the term

MEQ
where ¥ is the deflection under mass M, The frequency solu-
tion for the structure including live load mass then has the

general form

E a%x

pL= L
-~ 1
Hx2+/ ml(X)i dxl-b-...
(]

vhere the subscript denotes the span for which the function

(69)

applies and X is a function of the position of the mass M.
Using the vibratory deflection curves obtained from the

sine functions, the frequency equations for the mass of the
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load in the outer and inner spans respectively of a symmetrical

four span bridge are

- E1111‘2
o2 = pEE | 22 (70)
! m2L2 < v + 1+ <L1} —_— sin2 1Tx1
B L, L2 m2L Fl |
and
E1111‘2 . 1
2 h 2L1
PL, = 1# (71)
"o > + 1+ = gyn2 %2
Bt malp T

It is interesting to note that the form of the energy
frequency equation suggests that the effect of a number of

live load masses at different positions on the structure can

be superimposed by adding the inverse square of the circular

frequency of each

A N N NI S (72)
2 2 2 2 2 2
PL P1 Pz P3 P n

where pﬁ is the circular frequency of the nth load. This
procedure has a limitation in 1ts accuracy due to the original
assumption that the dynamic deflection curve does not change
due to the live load. Thus there is an increase in error as
the amount of live load increases.

The reduction in natural frequency for use in the corre-

lation of the experimental data was determined by first
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computing the ratio of the loaded frequency to the unloaded
natural frequency using the energy frequency Equations 68, 70,

and 71, This yields the equation

L—
== (73)

Ll) + 1 4 31n2 IT_J.{.];

for the mass of the load in the outer span of a four span
continuous highway bridge in which the outer and inner spans

are equal respectively, that is, Ll = Lh and L2 = LB' This
also ylelds the equation

3
Ei> El + 1

3
£1_> 1 M 2 TT%2
<L2 m, L, L

for the mass of the load in the inner span of the same

(74)

_.___L_
P

symmetrical four span continuous highway bridge. The ratio
thus found was then applied to the theoretical natural fre-
quency as determined by the exact solution previously de-
rived. The results of this procedure make the best use of
the two methods of vibration analysis presented herein.

In the case of the simple span the substitution of an
assumed sine deflection curve into the energy frequency

equation and the subsequent ratio of the reduction in the
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natural froquoncey is wsed by Inglis (10) and has the form

_ PL \/ 1 (75)
Tp 1+ ﬁ% sin? EEE

Equations 73 and 7l were used to determine the change in

e
g

the natural frequency of continuous bridges with different

span ratios for various positions of the live load mass and
this reduction in frequency is shown in Figure 6. The mass
ratio shown is the ratio of live load mass to the dead load

mass of the entire inner span.

Forced Vibration

Assumptions and discussion

The analytical solution of the equations of motion for
the forced vibration of an elastic system is dependent on the

type of forcing function cansing the motion. The assumptions
made concerning the type of forcing function representing a
moving vehicle on a highway bridge generally result in the use
of a moving force or mass freely mounted on springs or
harmonlcally oscillating as it traverses the bridge. Usually
a single load with one degree of freedom is used when the
force or mass is spring mounted. A more complicated loading
assumption 1s made by considering both the sprung mass, made
up of the vehicle body, and the unsprung mass of the axles and

springs.
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An actual vehicle is a complex system made up of a
chassis suspended on springs and connected to either the front
or rear axles, which are mounted on balloon tires. The com-
pressibility of the balloon tires might allow the axles to be
considered as sprung masses also. Thus a vehicle can be con-
sidered as three separate masses, each with six degrees of
freedom. This system could be simplified by using only the
most important motions, but the primary quantities governing
the simplest of motions can vary considerably from vehicle to
vehicle, Some investigators have shown (15) that the random
vibration of the vehicle often coincides with the harmonic vi-
bration of the bridges, even though this vibration is not a
resonant frequency of the vehicle. Other researchers (17)
indicate that the force reguired to initiate springing action
in the vehicle is great enough that only the springing of the
tires needs to be considered over most of the span. A very
complete analytical study has been made (13) using a computer
for a step-by-step solution of the equations of motion for a
series of smoothly rolling loads on simple spans. This re-
search added a great deal of qualitative data for interpreting
the effect of the various parameters on bridge vibration. It
was found that at certain speeds the effect of the individual

axles would accumulate and at other speeds would interfere

with each other, thus varying considerably the impact caused
by the group of axles. These results mark a significant change
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in the concept of highway bridge impact. 4 very significant
change, howsver, is in the assumptions required for the
analytical solution of this problem. The solutions of Inglis
(10), for example, which foun& the effect of the smoothly
rolling forces and masses to be insignificantly small, con-
sidered the loading as a sine series in which usually only the
first term 1s used. It would be difficult to study the effect
of two relatively closely spaced axle loads when each load is
represented mathematically by a sine curve extended over the
length of the span. Thus the primary problem in this analytical
study is the determination of‘a forecing function which will
form a series of impulses representing the repetitive action
of a series of axles rolling across a bridge. The two sig-
nificant parameters of this forcing function are the magnitude
and the frequency of the forcing function. The magnitude of
the forcing function is assurad herein to be a fﬁnction of the
oscillation in the structure resulting from the response of
the structure to a smoothly rolling load of constent magnitude.
. The frequency of the forcing function is assumed to be the
frequency of repetition of the axles of a vehicle traversing
the bridge.

The analytical work of Inglis, although it does not touch

on this problem, does offer a great deal of insight into a

golution,
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General theory

Inglis incorporates the use of a Fourier sine series for
the representation of the various loadings. A concentrated

load W at section x=a, is expressed in the form

i= o©

2W iTra 17Trx

T %E sin =T sin = (76)
i=1

The deflection resulting from this load function provides a
basis for some simplification of this load function. The
static deflection can be determined by usling elementary
mechanics. The deflection curve must satisfy the relationship

4= 0
d . 2W iTra i
EI EE& L ;E% sin T sin ‘E" (77)
i=1

When the load is near the center of a simple span, the static

L]

center line deflection is obtained, approximately, by using
only the first harmonic component of the load series. The

resulting statlc deflection is

S 3 3
2# 2WL WL
V= ler [lj T 48.7EI (78)

Therefore, by using only the first harmonic component of the

load, a very close approximation to the exact values of

WL3/h8EI is obtained. Thus, only the first harmonic component
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was used by Inglis for most of the solution.

The above calculation for deflection was made with the
assumption that the elastic curve of the beam is free to ro-
tate at the support, which 1s the elastic curve of a simply
supported beam. The exactness of this solution for deflection
is a result of the small difference between the simple beam
deflection curve for a concentrated load, and the deflection
resulting from the first componsnt of the harmonic representa-
tion of load, & sine curve. Thus, the type of solution which
results in a sine deflection curve is applicable to a simply
supported beam, but it requires some justification before it
is applied to a continuous beam. However, to do this it 1s
only necessary to consider the computations for natural fre-
quency by the energy method. It has been shown in Figure 5
that the assumed sine deflection curve yields a very good
approximation in determining the first mode natural frequency.
This indicates the closeness of the sine curve to the exact
theoretical first mode of vibration curve of a continuous
besm. In addition, the reduction in natural frequency re-
sulting from the mass of the loading vehicle on the bridge,
Figure 6, seems to agree with the experimental reduction.
Therefore, the type of first mode does not change appreciably
due to the 1live load mass. Therefore, in the analyslis of the
forced vibration, the shape function X will be represented by

a sinusoidal curve. The solution of the partial differential
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equations of motion may then be taken as

¥ = (t) sin —7%3'" (79)

To represent a moving load, the distance that the load
travels 1s taken as vt, where v is the velocity of the load
and t 18 the time required for the load to traverse the
distance a. The series representing the moving load of

constant magnitude then takes the form

1= O
2w iyt . ATix
T _E— sin —""""L sin = (80)
i=1

A more revealing form of this series can be made by making

the substitution z = -‘ér-i s resulting in
i=O
-2% —E— sin 1277st sin j-'-I—‘-T'T—’E . (81)
i=1 |

This form of the series indicates that the effect of a moving
concentrated load 1s equivalent to a series of stationary but

alternating loads whose forcing frequency is z.

Moving loads of constant magnitude

The oscillations produced in a beam by a moving loaed of
constant magnitude is found by solving the differential equa-

tion of motion, Equation 6, with the proper forcing function
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Equation 7 or 81. The solution of this problem by Inglis (10,
p. 27) 1s shown in Equation 8. Using only the primary com-

ponent of the load function, this equation becomes

2wLd 1 wa /

& 8in v

- — - | nm— —h- s\

Ja = gy L (v )2 (sin 27zt (2m> sin 2 i‘tﬂ (82)
- \2IT

Due to the practical limitations of speed, the term QET s in

the denominator, is negligible in comparison with unity and

can be ignored. Therefore this motion can be written

2WL3 I
Ya = 1. sin —= sin 27Trat - (é%f> sin 2TTft sin 2%%}

" Trber L

(83)
Using the first term in the parenthesis with z replaced by 1its
value of v/2L and the distance vt taken as L/2, the static de-
flection is obtained. Thus the second term is the amplitude
of oscillation of the beam which is superimposed on the static

deflection curve, and can be written

éﬁ&i —Z—> sin 2rft  sin UES (8L)
TTEI \2Lf L

The maximum percentage variation or oscillation in the beam
deflection is therefore

Ja = 7Y

v
(100) = >if (100) (85)

The right hand side of Equation 85 is equivalent to a per-

centage variation in a stationary load W of

Z(100) (86)
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The use of this equivalence allows the repetitive motion of a
series of axles to be represented by a stationary load whose
frequency of application is determined by the repetition of the

axles and whose magnitude of oscillation is v/2Lf or B/W.

Repetition of axles

The frequency of the impulses representing the passage of

axles 1s given by

(87)

W =

@ld

where s is the spacing of the axles and v is the velocity of
the vehicle. The harmonic oscillation which is assumed to
represent the repetition of axles is then taken as
P sin 2TTwt. (88)
The differential equation of motion used in the forced
vibration analysis will include the effect of damping. The
damping effect will be taken as a resistance to the transverse

vibration per unit length of bridge equal to

LI-TTnbm %% .
The differential equation of motion including damping is then

expressed by

2
BI -S—L% + L rmym —g—l +m —2—;% = f(x,t) (89)
X t

The hammonic forcing function f(x,t) for the repetition of

axle impulses is represented by the first harmonic component
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of the load series and includes the effect of the mass of the

load. The forcing function is written

f{x,t) = % [P sin 2Trwt - M —S—Lj} sin 71:: (90)

where ¥y is the vertical deflection of the mass. As discussed
previously, the solution of this partial differential equation

may be taken, as shown in Equation 79, as

= P(t) sin T;‘x X (91)

Moreover, since the loading is equivalent to a stationary but
harmonically alternating load, the vertical deflsction of the
mass is considered only a function of time, therefore

¥ = T(t). (92)
Applying Equations 91 and 92 to the partial differential
equation of motion for this case and rearrangling, results in
the equation

d2T

E_I_I_-E_ T + 4 rny I -—t- + (Im + 2M) =5 = 2P sin 2Twt. (93)
L

Further rearranging of this equation ylelds

I
L4y +BLI L o= 2P gip oTrut
at2 %[1+%LH:\dt m* [1-;% mL o+ 24

on)

dt

where, from Equation 75

1. f%
{1-}- éﬂ} }? (953)

mL
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and from the natural frequency equation for a simply sup-

ported beam

=p~ = 4Tre. (95b)

Substituting Equations 95a and 95b into Equation 9l yields

2
2 hig
aT 4TTny <_L>ir. + hwzfiqp = —=2F __ oin 27wb.  (95¢)
at2 £2 / at mL + 2M

The particular solution for T(t) in this differential equation
will be of the general form
T, = A sin 27wt + B cos 27rwt (96)

p

whe re Tp is the particular solution for T(t). Substitution of

this general solution into Equation 95¢ and equating the

coefficients of the sine and cosine terms on both sides of the

equation ylelds
2

. |
2,2 2 2 Ly 2P
[Lnr fL-uTrzw]A- [877 wny, faJB_m“zM (97)
2
fL
[8 7T2nbw }E}A + [u 7721'% - uﬁszJ B = 0. (98)

Solving these two equations for A and B gives

(- %)
2P 1,

A=
(ml + 2¥) L4728 (1 ) i§> 2, [nf w2>
£ T

(99)

e
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7 Owmowr \
=)
2P £2
= (mL + 2M) mrzf% < ¥ >2 ng 2 * (100)
1«73 +
L ot >

It is convenient to reduce this particular solution by using

the trigonemetric identity
A sin 2Trwt + B cos 2Trwt = D sin(27mwt =X ) (101)

where

D= /a°+B° and tan ok = 2,

Thus the particular solution can be written, by using Equa-

tions 79, 99, 100, and 101, as the following

sin (2TTwt =X )sin T (102)

g =
P (a4 2M)Lm / <1 N _> anw >

where Y i1s the particular solution of Equation 89. The first

term on the right hand side of Equationl® can be expressed in
the following form with the help of Equations 95a and 95b

mL 2P - 2P ¥ _ 2wl 2 (103)
(mL + 2m)u772f2 mL  L7°mL £2 W T/MEI W

Writing Equation 102 in terms of the static deflection in
Equation 103, resulting from a stationary load W, yields
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-
sin (277wt =X ) 8in x

SNy,

This equation represents the forced vibration or the particular

( 10l)

solution of Equation 89 with the forcing function defined by
Equation 90, The ccwmplete m=olution of the equation of motion,
Equation 89, is the sum of a complementary solution and the
particular solution. The general form of the complementary
solution is a free oscillation of the type

2
-2 [fL fa]
o = o2 M /206 | 4 sin 2Tyt + B cos 2TLy ¢ | sin 4=

(105
where be is the loaded damped frequency and is equal to

e

Using the conditio ns that y=0 when t=0 and dy/dt=0 when

t=0, the complementary solution can be evaluated. Thus the

complete solution, the complementary plus the particular, is

glven by
raslin(aTrwt-o()
3 - e"Yw/fp)sin 27Tbet
+ = gﬂ%“ E sin 2= (106)
p T Ve T plhEr w /< w2>2 <2nbw>2 L
-5 +
by
where q = 27Tnb L t. The first and second terms in the
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numerstor of the brackets represent the particular and the
complementary solutions respectively. The complementary solu-
tion varies ss a function of the damping. Consequently 1t
dies out as the load passes along the bridge, the ratio of

successive amplitudes of oseillation being

ol

By the time the load has reéched the center of the bridge, the
frequency of the bridge vibration corresponds to the frequency
of the particular solution. Thus the complementary solution
has been significaﬁtly reduced so that 1ts effect will be dis-
regarded. Therefore the maximum amplitude of this vibration
occurs near the center of the span, when the term [?1n(27th -

<) sin 2%5:] is a maximum, and is defined by

. (107)

2wL> P/W
Iy
TTHET /< w2>2 <2nbw>2
1-2) &

Since this deflection occurs as a result of the oscillations
of a stationary llve load W, it is in effect the dynamic
variation of the elastic curve about the static deflection
position of this curve. Therefore, the impact factor, as
previously defined, for the maximum amplitude of vibration is
the ratio of this amplitude to the static deflection. By re-
placing the ratio P/W by the oscillating load effect v/2Lf,
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this impast factor can be written

V/ZLf (108)

So-g) - (=)

All of the simplifications used to arrive at this result are

based on the assumption that the dynamic deflection curve of a
continuous bridge is sinusoidal, therefore in applying this to
a continmious structure, the length L in the oscillating load

term will be taken as the length of a asimple span bridge with
a natural frequency equal to the natural frequency of the con-

tinuous bridge. Thus, the equivalent length Leq is

Ly
Leg = z;zzy-lﬁr . (109)

The impact factor in Equation 108 closely resembles the
amplification factor normally associated with forced vibra-
tions. The ratio v/2Lf in the numerator represents the amount
of the load effective in the forcing function as the driving -
force, and is evaluated from the oscillations produced in e
beam by a single moving load of constant magnitude. These
oscillations, although they result from a load of constant
magnitude, are similar to those of an oscillating driving
force. The effect of these oscillations will be increased if
a repetition of axles occurs with the moving load of constant
magnitude and if these axles are in phase with the oscillating

load. The phase difference between thess two effects 1s not
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considered here since it 1is possible for the oscillating load
effect and the repetitive axle effect to occur together at
many different positions in a continuous structure. Instead,
these two effects are considered to be in phase, thus giving
an upper boundary impact factor for the forced vibration of
bridges by the optimum combination of the repetition of axles
with the oscillating effect of a Smoothly rolling load.
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EXPERIMENTAL INVESTIGATION

The Test Structures

The bridges tested in this research are part of the
interstate highway system around Des Moines, Iowa. They have
all been built within the last five years and are similar to
the type of bridge currently being built in Iowa's primary and
interstate road system. The approaches to these structures
are paved and there 18 a smooth transition to the bridge road-
way. One factor used in selecting the bridges was the uni-
formity of their actual roadway profile. All of the bridges
tested are constructed of longitudinal stringers designed to
act integrally with a reinforced concrete roadway slab. How-
ever, a variety in this general type of structure was desir-
able to determine the limitations of the theoretical forced
vibration approach presented herein. The variety was obtained
by selecting three continuous bridges in which different
materials were used to fabricate the longitudinal stringers.
The mass per unit length is approximately the same in these
bridges. A much heavier bridge was tested which is a simple
span bridge with a mass per unit length approximately double
that of the other structures. The structures investigated in

this research are discussed below.
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Simple span prestressed concrete bridge

The simple span bridge investigated has six postensioned
prestressed concrete beams and a span of 100 ft. The stringers
are designed and constructed to act compositely with the rein-
forced ccnerete roadway slab. The roadway is 30 ft wide with
a 3 £t safety curb on both sides (Figure 7). This structure
is one span of a seven span bridge carrying westbound traffic
on Interstate 35 over the Des Moines River north of Des
Moines, Iowa. Each span of this bridge is isolated from

adjacent spans by a one inch expansion joint.
Continuous aluminum stringer bridge

This structure is a 220 ft continuous four span bridge
with four aluminum stringers which act compositely with a re-
inforced concrete roadway. This bridge has a 30 ft roadway
with a 3 ft safety curb on both sides (Figure 8). It carries

traffic on Clive Road over Interstste 35 northwest of Des

Moines, Iowa.

Continuous steel stringer bridge

This 24,0 ft continuous four span structure is very
similar to the previous bridge except for the longitudinal
stringers. The four stesl stringers act compositely with a
reinforced concrete roadway which is 28 ft wide with a 3 ft
safety curb on both sides (Figure 9). This structure carries
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ct

he traffic on Ashworth Road over Interstate 35 west of Des

Moines, ITowa.

Partially continuous prestressed concrete bridge

This four span bridge 1s 198.75 ft long with a 24 ft
roadway. The reinforced concrete roadway slab is continuous
over the interior supports and has a 2 ft safety curb on both
sides. There are six pretensioned prestressed conorete beams
in each of the four spans. The ends of the simple span beams
are encased by a cast-in-place diaphragm at the pilers. These
pler diasphragms plus the continuous roadway slab, which acts
compositely with the stringers, result in a relatively con-
tinuous bridge structure (Figure 10). This structure carries

traffic over Interstate 35 at the Cumming Interchange south-

west of Des Moines, Iowa.

The Test Vehicles

The vehicle effect has been simplified as much as
possible in the theoretical analysis. The only parameters
which are considered to be affected by the vehlicles are the
forcing function and the losded fregquency of the bridge. The
forecing function 1s a function of the axle spacing and the
velocity of the vehicle, and the loaded frequency of the
bridge is a function of the ratio of the mass of the vehicle
to the mass of the bridge span. The other variables of the
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loading vehicles, and there are many, were disregarded.
Vehicle "A"

Vehicle "A" is an International I~190 van type truck
(Figure 11). This truck used to check the Iowa State Highway
Commission scales has a wheel base of 1l ft, 8 in and a tread
of 6 ft. It weighs ;0,650 1bs with 31,860 1lbs on the rear
tandem axle. The forced vibration resulting from this vehicle,
for any given velocity, has two possible frequencies; that 1is,
this vehicle could have the forced vibration frequency deter~
mined bﬁ the passage of the individwal axles in the tandem
rear axle, in which case the forcing frequency is v/h, or it
could have a freguency determined by the passage of the front
and rear axles, in which the forcing frequency is v/14.67. In
the latter case the axle spacing has been taken as the distance

to the center of the rear tandems.,
Vehicle "B"

Vehicle "B" is a tandem axle, International VF-190 truck
tractor pulling a 36 ft Monnon flat bed trailer (Figure 12).
The tractor has a wheel base of 13 f%, 1 in and a tread of 6
ft. The trailer wheel base i3 23 ft and the tread of the
traller wheels is 6 ft. The total weight of this vehicle is
73,500 1bs, with 32,900 lbs on the trailer tandem axle and
31,700 1lbs on the tractor tandem rear axle. This vehicle has
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three effective axle spacings and therefore the forced vibra-
tion resulting from this vehicle, for any given velocity, has
three possible frequencies. These three frequencies are v/l
resulting from the individual axle spacings of the tractor and
trailer tandem axles, v/13.08 resulting from the tractor
wheelbase axle spacing, and v/23 resulting from the trailer
wheelbase axle spacing. For the tractor and trailer wheel-
base, the axle gspacing has been taken as the distance to the

center of the tandems.

Instrumentation

Strain recording equipment

To determine the dynamic effect of the vehicles, the
static and dynamic bridge moments were computed from the
strain measured at the extreme bottom fiber of each stringer.
To measure the strains, standard SR-lL strain gages were used.
The types of SR-l gages used were A-1l, A-5, and A-9. The re-
sistance to the ground of the SR-li gages used on the steel and
aluminum girders was as follows: The A~1l gages 100,000 to
1,000,000 ohms; the A-5 gages 500,000 to 1,000,000 ohms. The
A-9 gages have approximately a six inch gage length and were
used to record the strains in the concrete girders.

The strain readings were recorded by a Brush uhiversal

amplifier (BL-520) and a Brush direct-writing recorder
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(BL-274). This equipment produces a continuous record of
strain for which the time base can be varied by the speed of
the racording paper. The speeds available vary from 1 to 250
mm per sec¢. For s check of the time base as determined by the
speed of the paper, a one second timer was used to actuate an
event marker on the edge of the record. The Brush Universal
amplifiers have a number of attenuator settings which vary
from 1 microinch per inch of strain per Attenuator-Line to
1,000 microinch per inch of strain per Attenuator-Iine, and
therefore allow a wide choice of amplification of the strain.
The power for this Brush recording equipment was obtained from

a 10 KW Onan motor generator.
Location of strain gages

The strains were measured in all the stringers at the
center line of the single span bridge and in the outer and
inner spans and at the interior supports for the continuous
bridges. This allowed the impact to be evaluated at all the
sections of maximum bending moment for the entire length of
the bridge structures. Because the continuous bridges are
symmetrical about their center interior support it was neces-
sary to instrument only one half of these bridges with strain
gages.

Experimental sections. The experimental sections in-

strumented for the svaluation of the bridge moments are
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described below and shown on the elevation view of each
respective bridge plan.

I. Section I is located at a point four tenths of the
outer span from the end support for all the four span con~-
tinuous bridges. Section I for the simple span prestressed
concrete bridge i1s at the middle of the span.

II. Section II is located at the middle of the interlor
span for the continuous steel stringer and aluminum stringer
bridges. In the partially continuous four span prestressed
concrete structure, Section II was offset 1 ft 6 in toward
the center interior support to eliminate the effect of a
transverse diaphragm at the middle of the interlor span.

ITI. Section III is located at the first interior sup-
port of the continuous bridges. To eliminate or reduce any
effect which the reaction diaphragms might have, Section III
was offset from the center line of the reaction toward the ex-
terior span, one foot, six inches, and one foot eight inches,
for the aluminum stringer, the steel stringer, and the pre-
stressed concrete stringer bridge respectively.

IV. Section IV is located at the center interior sup-
port of the continuous bridges. This section is offset from
the center line of the reaction a distance egual to the offsst
of Section III for each respective continuous structure.

All of the bridges were instrumented at each of the above

sections with en SR-l; strain gage at the center of the bottom
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flange, or the extreme lower fiber, of each stringer.
Experimental neutral axes. To obtain the moments re-
quired to evaluate the impact, the section moduli or relative
section moduli of the stringers was required at the sections
where the strains were measured. The effective section of the
steel snd the aluminum stringers vary considerably, depending
upon their cross section due to cover plates or varisble
flanges and the proximity of the curbing to the outer
stringers. These changes in cross section result in large
changes in the moments of inertia and section moduli from one
section to another. The actual section moduli and moments of
inertia of the longitudinal stringers were determined experi-
mentally by obtaining the position of the neutral axis of the
longitudinal stringers. Since the bridges are symmetrical
about their lateral and longitudinal center lines it was
necessary to instrument only one quadrant of each bridge for
the determination of the position of the neutral axes of all
the experimental sections used to evaluate impact. To obtain
the neutral axis five SR~} strain gages were positioned on
each stringer. One gage was located at the center of gravity
of the longitudinel stringer, and the other four gages at the
extreme fibers and the gquarter points of the stringer. The
locations of the neutral axes were then used to determine the
emount of concrete slab which acts compositely with the

eare:

stringers. The entire roadway slab thickness was used in
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these calculations. The moment of lnertia was then determined
using the necessary amount of slab. A modular ratio of 10 was
used for the steel stringer bridge and a ratio of 3.33 was
used for the aluminum stringer bridge in these calculations.
However, once the position of the neutral axis is known the
moment of 1inertia is independent of the modular ratio used.

In both of the prestressed concrete stringer bridges, the
lateral spacing of the stringers is much smaller and the
cross sections of the stringers do not vary along the beams.
Moreover, the magnitude of the strains in the web and upper
flanges of the prestressed concrete stringers were so small as
to make the determination of a neutral axis very uncertain.
Therefore, the section moduli of the longitudinal prestressed
concrete stringers were assumed to be equal at each section
investigated. It was found that in the steel and aluminum
stringers, in which the experimental neutral axes were deter-
mined, that the actual variation in the section modull made
very little difference in the impact since the Ilmpact is a
difference in moments or a relative difference in the recorded
strains. Thus the assumption made in the prestress concrete

bridges will not appreciably affect the results regardless of

the exact section moduli.
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Experimental Procedure

Performance of the tests

The impact resulting from the action of the loading
vehicles has been derived analytically.' To experimentally
determine this dynamlc effect, static tests were first per-
formed by the loading vehicle creeping across the bridge with
the motor 1dling. The maximum moment in the bridge cross
section snd the longitudinal position of the vehicle was com-
puted. This was used as a base for the evaluation of the re-
sults of the dynamic tests. The dynamic tests were thon con-
ducted at vehicle speeds beginning at approximately 10 mph and
increasing by increments up to the maximum attainable speed.
The maximum dynamic moment was obtained in the cross section
for the vehicle in approximately the same longitudinal position
as the maximum static moment. The dynamic and .sbatic tests
were performed along four different lanes on the bridge road-
.way. Two lanes for each direction of travel with one lane
corresponding to the highway lane and the other lane at the
longitudinal center line of the bridge. For each assigned
lane, the left front tire of the vehicle was guided along a
peinted stripe indicating the lane on the bridge roadway.
During the runs a variation to one side or the other of the
painted stripe was never more than one and one-half inches.

Pneumatic tubes were placed across the bridge roadway at
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the center line of one exterior support and.at the center line
of the center interior support for the continuous bridges and
at the center llne of both exterior supports for the simple
span bridge. The signal produced when the vehicle tire passed
over this tube activated an event marker on the strain record.
Knowing the chart speed and the distance between tubes, the
average vehicle velocity was computed. These event markers on
the strain record also enabled the longitudinal position of
the vehicle to be determined at any time.

The testing of the continuous aluminum and steel stringer
bridges was divided into two series for both test vehicles due
to the limitation of the number of channels of Brush recording
equipment. Section I and III were tested in one series and
Sections II and IV in the second series. Both vehicles "A"
end "B" were used in the dynamic testing of these bridges.

The increased number of stringers in both the prestressed con-
crete bridges necessitated one series of tests for the test
vehicle for each experimental section. Only Vehicle "A" was
used in the dynamic testing of these bridges. At each test
section the strain was measured at the extreme lower fiber of
the stringers. In each series of tests the vehicle made four
static runs, one in each lane, and sixteen or twenty dynamic
runs, four or five in each lane, depending on the maximum
speed obtainable for the particular structure. A continuous

strain time record was obtained for each run. Each strain
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record, therefore, contalns a continuous recording of the
outer fiber strains for the stringers at the test section, an
event marker trace for the longltudinal location of the
vehicle and vehicle speed, and a time base with a one second

interval,

Data reduction

The test record shown in Figure 13 is a typical dynamic
strain record showing the variation of the outer fiber strain
as a vehicle moves across the bridge. The static strain time
¢urve has been superimposed on the dynamic strsin time curve
and is indicated by a dotted line. This record was obtained
from a stringer at Section I of the simple span prestressed
concrete stringer bridge with Vehicle "A" traversing the
bridge at 38.4 feet per second.

The maximum static bridge moment is obtained by summing
the moments in all the stringers computed from the maximum
static strains. Similarly, the total maximum dynamic bridge
moment is determined by summing the dynamic moments in all the
stringers computed from the maximum dynamic strains. The
dynamic effect, or the impact, of the vehicle was then
evaluated from the moments as the ratio of the difterence or
the total dynamic and static bridge moments to the total
static bridge moment.

The passage of the front axle and each individual axle of
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the tandems over the pneumatic tubes is clearly shown by the
vehicle location trace. In effect, the vehicle is moving from
left to right and this trace indicates the time each individual
axle crosses over the center line of the exterior supports.

The upper event marker, used as the time base, indicates
time in one second intervals. This time base was used for
determining the vehicle speed and the frequency of bridge vi-
bration. The frequency of vibration of the bridge at meximum
moment was determined by using the maximum peak-to-peak period
of vibration indicated by the T in Figure 13.

The amplitude of the residual vibration which continues
after the vehicle has gone off the bridge was very small in
this run. This was the usual case for the concrete stringer
bridges, however, the amplitude of residual vibration for the
steel and aluminum stringer bridges was usually much larger.
The unloaded natursl frequency of the bridge and the bridge

damping was evaluated from this residual vibration.



87

RESULTS AND DISCUSSION

Natural Frequencies
First mode of vibration

The general theoretical method employed to determine the
natural frequencies of continuous bridges assumes that the
stiffness, the product of E and I, is constant throughout the
length of the bridge. This solution 1s applicable for most
steel stringer and prestressed concrete stringer bridges since
thelr cross section usually remains constant except for the
usual cover plates near the interior supports of the steel
bridges. As discussed previously, the effect of increaased
stiffiiess at the plers, due to cover plates, should not
appreciably affect the first mode of vibration. However, the
alumirum bridge has a different value of EI in each span in
addition to the increased stiffness at the piers. Thus a
solution was obtained for this bridge which takes into account
the large change in stiftness or the various spans but is
applicable only for the first mode and higher odd modes of
vibration.

The solutions of the frequency equations yield values of
KL from which the natural frequencies are determined. Values

of KL can be obtained from Figure 1, 2, or 3 since these
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figures graphically represent the first mode solution of the
various frequency equations. The natural frequency is then

found by using Equation 40,

2
¢ - (KL,) /Esly
27712 m

2 2
Values of KL, of 3.400, 3.339, and 3.408 were determined
analytically for the aluminum, steel, and continuous pre-
stressed concrete bridge respectively. The natural fre-
quencies resulting from these values of KL are compared with
the experimentally obtained natural frequencies in Table 1.
Also shown 1n this table are the parameters of the various'
bridges which are required for the determination of the
resonant frequencies. The moment of inertia used in the
stiffness parameter EZIZ is the moment of 1inertia of the en-
tire cross section at Section II of the various continuous
bridges and includes the sidewalk curb. For the simple span
}bridge, the solution of the frequency equation yields a value
for KL of nTT which is given in most tests on vibrations (21).
The first mode of natural frequency obtained for this bridge
is compared with the experimental value in Table 1. A modular
ratio, the modulus of elasticity of the stringer over the
modulus of elasticity of the reinforced concrete slab, of

3.4k, 10, and 1.25 was used in the aluminum, steel and both
concrete bridges respectively. Thus the modulus of elasticity
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Table 1. Naturel frequencies

Bridge Aluminum Stesl Continuous Simple
stringer stringer concrete span con-
bridge bridge stringer crete

bridge . stringer
bridge

L, (£%) 68.75 67.50 56.25 100.0

Ly

at— 00600 0.777 0.766 -

L

EpI, (1b-in) 185.2x10%0 213.4x101° 197.8x10%0 1.609x10%°

B,

1-1 -

EETZ 0.615 1.0 1.0

2

m, -(—lﬁ—*"-g-‘;é—) 0.92l 0.889 0.889 1.721

. n |

m)

— 0.989 1.0 1.0 -

2

KL, (Radians)  3.400 3.399 3.408 3.1416

fiheo. (cPB) 3.825 b3l 6.06 3.34

fexper. (CPS) 3.97 L|-057 7080 ,.].026

£

Foec. 0.96l 0.951 0.780 0.784

exper.

of the reinforced concrete roadway slab and the prestressed
concrete stringers were taken as the value used in design for
each case, this probably accounts for most of the error in the

theoretical frequency determinstion of the prestressed concrete
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stringer bridges. It was observed durirgz the experimental
testing that the natural frequency of the bridges reduces more
than theory indicates it should when a vehicle first enters
the bridges span. However, once the vehicle is on the bridge
the reduction in natural frequency, as the vehicles position
changes, is similar to the theoretically calculated value but

it is very difficult to measure accurately.

Higher modes of wvibration

The first mode of vibration was usually found to be
prevalent in controlling the response of the bridges to the
forcing function of the axles. This was true in most cases
and at experimental Sections III and IV where the first mcde,
or higher odd modes, have the least effect. However, an out-
standing exception occurred in the case of the aluminum
stringer bridge. In this structure the experimental impact at
Section IV, the section at the center interior support, was
found to be a function of a higher mode of vibration. The
resonance condition in this case 1s a function of the second
mode. This is the first root of the even mode frequency equa-~
tion for a four span symmetrical bridge (Equation 39), and
corresponds approximately to the vibration of the beam with
both ends fixed. Therefore, it is reasonable to assume that
this vibration, when it occurs, will result in the largest

dynamic increase in moment at the supports. The theoretical
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second mode solution was found by using Equation 39 which was
derived by assuming a uniform cross section. This equation
was used because the increased saccurasy of a special solution
including the effect of the change in stiffness of each span
would be insignificant when compared to the large change in
stiffness near the plers due to the increase in cross section
of the aluminmum stringers at that point. The value of KL2 for
the second mode is L.345 which yields a vibratory frequency of
6.25 cycles per second. This theoretical mode frequency
agrees closely with the measured frequencies occurring while
the vehicle 1s on the inner spans vibrating the bridge at its
second mode. However, this frequency could not be compared
with an experimental unloaded natural frequency because this
mode of vibration occurred only when the vehicle was on the

inner span.
Effect of the vehicle

The loaded natural frequency is applied in the determina-
tion of the natursl frequency of the bridge which occurs when
the vehicle 1s on the span. This value of loaded natural fre-
quency will control the resonance condition of the frequency
of the vehicle forcing function with tie natural frequency of
the bridge. This resonance condition has the greatest effect
on the smount of impact when the vehicle is near the position

of maximum moment.
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The reduction in natural frequency due to the mass of the
vehicle has been theoretically determined and although it
could not be correlated with the experimental reduction, due
to the difficulty of measuring it, it is desirable that the
effect of the vehicle mass be taken into account. This effect
can be considered either by the total effect of the individual
, 'gs or by the effect of the entire mass at its center of
g:a%ity. If the effect of each axle is determined individually,
the over all effect of the vehicle is different than if the
mass of the entire vehicle is placed on the bridge at one
point. The actual vehicle; although applied to the bridge by
means of several axles, 1s usually made up of a rather con-
centrated mass. For this reason Vehicle "A" was used as a
concentrated mass. The truck and trailer, Vehicle "B, was
made up of large concrete blocks representing the load and
located directly over the tandem axles of the truck and
trailer. Therefore for this loading, the individual effect of
the truck tractor and the trailer was found when the center of
gravity of the truck tractor and the center of gravity of the
trailer axles were at the center of the span.

The different lengths of the spans in the continuous
bridges result in a different loaded naturasl frequency for the
load in each span. Therefore in the correlation of the experi-
mental and theoretical impaet, an impact curve 1s obtained for

the loaded frequency as each span is loaded. Moreover, since
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the truck tractor and trailer of Vehicle "B" was used
separately, the reduction in frequency is different for each
part of the vehicle. All of the various values of loaded fre-
quency will have an individual impact curve determined by
Equation 108. To reduce the number of these closely spaced
curves and to simplify the presentation of the impact data,
only two curves are shown for the reduction in natural fre-
quency. These curves are for Vehicle "A" and the truck
tractor of Vehicle "B" in the outer and inner spans. These
two loads have the same effect on the reduction in frequency
since their masses are within 0.1% of each other. These
various theoretical loaded natural frequenciles obtained for
the vehicles in the outer and inner spans are 98.0% and
94.9%, 97.1% and 95.2%, and 96.6% and 9).6% of the unloaded
natural frequencies of the continuous aluminum, steel, and
concrete stringer bridges respectively. The loaded natural
frequency of the simple span bridge is 95.3% of the unloaded
natural frequency for Vehicle "A" at the center of the span.

Forced Vibration

Forcing function

In the determination of impact, the frequency of the
forcing function of the vehicle has been taken as the cyclical
repetition of the axles. This cyeclical repetition is determined
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by the frequency of passage of the axles across the bridge.
This action of the axles might be interpreted as the forcing
of a nodal point across the structure by each axle. Therefore
for the fundamental mode of forced vibration with no higher
harmonics, the spacing of axles will be one wave length of the
bridge vibration. The solution obtalned for the differential
equation of motion of a beam subjected to thisnforcing func-
tion consists of two parts, thejcdﬁbiémentary solution and the
particular solution. The complementary solution represents
the free vibration of the beam and the particular solution
represents the steady state forced vibration occurring after
the complementary solution has been reduced to an insignifi-
cantly small part of the total vibration. This steady state
forcad vibration, the particular solution, has the same vlbra-
tory frequency as the forcing function. Therefore, in the
cases in which only the particular solution is applicable,
that is, when the complementary solution has been reduced
significantly, the frequency of the vibratory motion of the
structure should correspond to the frequency of the forcing
function. To determine the applicability of this concept, it
must be shown that the forcing frequency of the axles is pre-
dominant in the forced vibration of the bridge, or that the
response of the bridge is similar to that of a steady state
forced vibration. The frequency of vibration of the structure

was determined at the time the vehicle was producing the
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maximum moment. This value of frequency was obtained by using
the one or two cycles of vibration at the maximum amplitudes
of vibration. It was found in this experimental work that the
natural frequency of the structure was prevalent as the vehicle
entered the bridge, and further, that this natural frequency
more nearly corresponds to the computed value than to the ex~
perimental value of natural frequency obtained when no vehicle
was on the bridge. As the vehicle approached the position of
maximum moment the frequency became approximately equal to the
frequency cf the forcing function (Figures 1 to 18). Since
there are two different forcing frequencies available for
Vehicle "A" and three different forcing frequencies avallable
for Vehicle "B", there were a number of different frequencies
which could be used as the frequency of the forcing function.
However, only one axle spacing was predominant in determining
the frequency of the foreing function. This is readily shown
in Figures 1l to 18 in which the frequency of the bridge at
maximum moment is shown as a function of the velocity of the
vehicls., Variations in this result from the tendency of the
bridge vibration to remain near the resonant frequency of the
struéture a higher speeds where the forecing frequency is ime
pressed by the axle spacing of the vehicle wheelhase.

An exception to the wsll-defined forcing frequency cf the
velocity divided by the axle spacing occurred in the continuous

prestressed concrete bridge (Figure 19). This structure was
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constructed by placing a continuous reinforced concrete road-
way over four spans of simply supported prestressed concrete
beams. Unlike the other bridges tested, this bridge does not
have a point bearing to allow free rotation at the supports
and 1t iIs not fully continuous. The interior supports have a
fifteen inch reinforced concretg diaphragm resting on an 11/32

inch prefcrmed fabric bearing pad. vThéséfdigphpagm;:gpggge_;hq_

ends of the beams at eadﬁ%%gﬁgg%gggg@ﬁﬁi’_“*“”*

the roadway slab to make tﬁé'sffuCﬁﬁfe partially continuous.
The exterigr supports have approximately sixteen inches of the
end ofgthe%bgam resting on similar 11/32 inch bearing pads.
The effectébf'the large flat bearing surfaces at the supports
heav11§ daépsvthe vibration of the continuous bridge. These
bearing§ giSO cause a certain amount of fixity at each support
thus fuftﬁér complicating the vibratory system. Moreover, the
pler dlaphragms acting with the continuous reinforced concrete
roadway slab allow only the negative moments to be trans-
mitted across the piers, or interior supports. Positive
bending at the plers is eliminated due to the tension in the
bottom fibers of the pier dlaphragms. These diaphragms are
not reinforced to resist tension in that direction. Therefore
it is very difficult to establish a well defined vibratory
system in such an incongruous structure. This is exemplified
in Figure 19 by the random vibration of the structure at the

meaximum moment which results from the passage of Vehicle "AY,
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For this reason, the application of the forced vibration theory
presented herein for the determination of the response of this
structure to the forcing function of the repetitlon of axles

has very little significance.

Impact

fTﬁéﬁimpéct'as,determined herein is a function of the

smplitude of forced vibration. The derivation of the theo-

' denominator of - theith'or&ﬂ_M 1‘impact factor is & function of

“tio of?thﬁ“fbrcing frequency to the loaded natural fre-

quency e,structure and the ratio of the damping factor to
th¢~n§_ natural frequency of the structure. The numerator

of this impuct factor is a function of the ratio of velocity

to. the lengtﬁ;of the span. Therefore since the forcing fre-
 quency is the ratio of the velocity of the vehicle to the axle
spacing, the magnitude of the theoretical impact will depend
upon the velocity, axle spacing, length of span, loaded
natural frequency, unloaded natural frequency, and the damping
factor.

The damping factor was obtained experimentally from the
decreasing amplitude of the residual vibrations. To experi-
mentally determine this, the amplitude of displacement ¥ of

the strain time curve 1s measured at time t, and at a later
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time ty which is N cycles later. The ratio of these ampli-
tudes !b/xh is a constant, for viscous damping, end 1/N times
the natural logarithm of this ratio 1s called the average
logarithmic decrement. This quantity therefore does not de~
pend on the way the damping was defined in the original equa-
tion of motion and thus is often used as the measure of the
damping capaclity of a structure. The average logarithmic
decrement is then given as L

Iy

The dféping capacity of each'brﬁ?ge_will be given in terms of

the ave ag;ilogarithmic decrement.“;":'“

Si .span prestressed concrete bridge. The correlation

of the rimental and theoretical impact for the postensioned

prestre ggg'concrete bridge 1s shown in Figure 20. The.experi-

mental impact values determined at the center line of the

simple spaﬁ (Section I) are shown with the theorstical impact
curves obtained by Equation 108. A loaded natural frequency
which is 95.3% of the theoretical natural frequency of 3.3l
cycles per second was used in determining the theoretical im-
pact curves. The average logarithmic decrement for this
bridge is 0.0916. The resulting amount of dsmping did not
affect the theoretical curves except at resonance. Therefore
for the portion of the impact curves shown in this figure, the

effect of the damping is insignificant. Resonance occurs when
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the ratio of the forcing frequency or the frequency of the
repetition of the axles to the loaded natural frequency of the
structure is one., This condition occurs two times for Vehicle
"A", The individual axles of the tandsm rear axle unit acting
individually cause a resonance at the smaller velocities, and
the front axle combined with the tandem rear axle acting as
one unit cause resonance at the larger velocities. The impact
increases as the ratio of the forcing function to the loaded
natural frequency approaches one. The experimental impact
values agree with the theoretical impact curveshwhi¢h, as pre-
vicusly discussed, yield an upper limit-oﬁgimggéﬁﬁféf the
assumptions made in the derivation,;:Qﬁ;fﬂ;fimﬁm'Qéhicle
velocity limited a complete 1nves§§g§ﬁféﬁ'§f the wheelbase
resonance condition. N

Continuous aiuminum stringefﬁﬁfi&éb; The experimental

and theoretical impact for this éﬁgﬁéﬁu?é'is‘Shown in Figures
21 to 2. The theoretical curveéiéhéﬁya_good agreement with
the experimental impact values.-:As previously discussed an
additional resonance occurred in this structure when the
bridge wasexcited at its second mode of vibration by the
individual axles of the tandem rear axle unit. Thils condition
is most prominent at the center interior support. A correla-
tion of the theory presented herein for the upper limit of the
wheelbase resonance condition was not obtained due to the
limited velocity of the vehicles. Simllarly, the resonance
condition of the trailer wheelbase could not be investigated.
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A loaded natural frequency of 98.0% eand 94.9% of the theo-
retical natural frequency of 3.825 cycles per second was used
for the outer and inner span resonance curves respectively.
The average logarithmic decrement for this bridge is 0.050.
The resulting amount of demping did not affect the theoretical
curves except at resonance. The maximum values of impact
written as a percentage vary from 20,6-31.9% and 19.1-20.8%
for Vehicles "A"™ and "B" at the positive and negative sections
respectively. Moreover it should be noted that the resonance
condition of the individusl axles of the tandem rear axle unit
cause an experimental impact almost as large as the resonance
condition of the vehicle wheelbase at higher velocities.
TherefOre?thq resonance effect of the repetition of axles 1is
important at the slower speeds.

Continuous steel stringer bridge. The correlation of the

experimental and theoretical impact for this bridge is shown
in Figures 25 to 28. More experimental impact values lie out-
side the theoretical impact envelope in this bridge than in
the previous bridges. The greatest discrepancy occurs as the
resonance condition is approached from the left side of the
figure. That is, the large number of experimental polnts out-
side the theoretical envelope at velocities lower thai. the
resonance velocities might result from the loaded natural fre-
quency of the bridge being smaller than the value used to ob-

tain the impact curves. A smaller loaded natural frequency
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would move the theoretical curves to ths left in these
figures. However, the theoretical curves shown still
qualitatively describe the variations in the experimental im-
pact. There is no indication iIn this structure of any higher
modes of vibration. Moreover, not snough experimental data
was obtained for a good evaluation of the resonance condition
of the individual axles of the tandem axle unit with the first
mode of vibration. Therefore, the experimental impact values

fgf;ﬁhe tandem axles were smaller than those obtained by the

fé?esogéﬁge condition for the vehicle wheelbase. A4lso, a large
;ﬂféhoughf§;locity was not obtained for the trailer wheelbase to
cause a-resongnbe condition. The maximum values of Ilmpact,
written_as'é‘peréqnpage, vary from uu.leaé;S%%and 22.8-39.2%
for Vehiélés "A“;aﬁ&?"B" atlthé posibivé}ana~negative sections
 respectively. A loaded nstural fre&uency of 97.1% and 95.2%
H;of the theoretical unloaded natural frequency of kL.3L cycles
per second was used for the outer and inner span impact curves
respectively. The average logarithmic decrement of this
bridge is 0.062. This amount of damping did not affect the
theoretical curves except at resonance.

Partially continuous concrete stringer bridge. The

correlation of the experimental and theoretical impact for
this bridge is shown in Figures 29 and 30. A loaded natural
frequency of 9,.6% of the theoretical unloaded natural fre-

quency of 6.06 cycles per second was used to obtain this curve.
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The curve for the vehicle on the outer span is not shown slnce
it is Just to the right of this curve similar to those in the
previous figures. This curve includes the effect of damping,
which was considerably larger for this structure than for the
previous structures. The average logarithmic decrement of the
residual vibration of this structure is 0.406. This amount of
damping results in a reasonable upper limit for the impact
curves of 0.298, for the resonance condition caused by the
individual axles of the tandem axle unit. Since there is not
enough experimental Impact data at the velocity corresponding
to this resonance condition, this upper limit could not be
verifiled. The experimentzl Impact values show some agreement
with the theory at the positive moment sections. However, at
the negative moment sections some of the impact values are
large at the higher velocities. But, since the total moment
in the section is smsll, the large lmpact value does not
result in an over-stress. The large impact results becsause a
very small static live load strain at the center interior sup-
port was obtalned as the vehicle moved across the bridge with
the motor 1idling. Then, when the load was applied dynamically
at larger velocities, the strains became significantly larger.
Therefore, the values of impact at Sectlon IV become quite
large due to a relatively large increase in a small value.
This action is the result of the different dynamlc and static

responses of a bridge which acts as a continuous beam forx
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negative moments at the interior supports and as a simply sup-
ported beam for positive moments at these supports. This in-
consistent response is, therefore, due to the nonhomogeneous
or incongruous structural system. It was shown previously
that the experimental unloaded natural frequency of this
structure corresponds to the theoretical unloaded natural fre-
quency determined on the basis of a continuous structure.
However, ﬁhe forced vibration frequency of this structure did
not correspond at all to the frequency of the forcing function
at maximum moment. These inconsistencles in the response of
the bridge will not allow the dynamic response of this
structure to.be analyzed by the forced vibration analysis as

presented herein.
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CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Natural frequency

The theoretical unloaded natural frequencies of the
bridge structures, neglecting damping,; agree very well with
the experimentally determined unloaded natural frequencies for
the aluminum and steel stringer bridges and rather well for
the concrete stringer bridges. When the theoretical loaded
natural frequency reduction is applied to both frequencies to
obtaln the theoretical and experimental loaded natural fre-
quencies, it is found that the theoretical loaded natural fre-
quency compares better with the forced vibration resonances
than the experimental loaded natural freqguency.

The reduction in natural frequerncy due to the addition of
the vehicle mass to the vibratory system has been analyzed by
the energy method. In this method, the shape of the vibratory
curve was assumed first to be a polynomial and secondly to be
a sinusoidal curve. The constants in the general equations
for these curves are evaluated by the boundary conditions for
the structures. The general polynomial curve used did not
agree nearly as well for the unloaded natural frequency as did

the sinusoldal curve.
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It 1s assumed, therefore, that the configuration of the
unloaded vibrating continuous beam is reasonably close to a
sinusoidal curve. The use of this assumed curve enables the
effect of the mass of the vehicle on the unloaded natural fre-
quency to be taken into account with reasonable accuracy. The
accuracy of the sinusoildal curve also leads to the assumption
that the deflection curve 1n the forced vibration analysis is

a sine curve.

Forcing function

The effect of the vehicle 1Is assumed to be an oscillating
forcing function whose frequency is the frequency of axle
repetition and whose oscillating force is the oscillating load
effect of a constant force. Thus the effect of the vehicle
has been simplified as much as possible. The correlation of
the theoretical and experimental impact indicates that the
simplifications made in the effect of the vehicle are justified

for the bridges tested and the experimental velocities used.

Forced vibration

Impact, as presented herein, is determined by the applica-
tion of forced vibratiocn theory to the dynamic problem of
multiple axle vehicles traversing continuous highway bridges.
The results of this study show a good qualitative correlation

between the amcunt of impact and the proximity of the frequency
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of axle repetition to the loaded natural frequency of the
structure, or the resonance condition. The correlation is
good for bridge structures which have a well defined vibratory
system. That is, if the structure responds to a forced vibra-
tion without changing its natural modes of vibration, as ob-
tained for the free vibrations of the structure, the response
of the structure is similar to that of a steady state forced

vibration.

Recommendations for Future Study

The research contained in this study has taken into
account, theoretically, the factors in a bridge structure
which will affect its response to a forced vibration. The
correlation of this theory is obtained by field testing of
existing bridge structures. The field testing, as a means of
evaluating impact, indicates that forced vibration theory is
applicable to the problem of bridge impact. However, the
factors affecting the response of the bridge structure need to
be investigated further. A good example of this 1s the varia-
tion in the amount of composite action exhibited between the
reinforced concrete slab and the longitudinal stringers along
the length of the bridge. This aspect of the bridge structure
is not entirely known for continuous bridges, and is basic to
the response of the bridge to live loads. Another problem in

the response of the bridge is the effect of the live load mass.
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A theoretical analysis was used in this research but the
irregularities exhibited by the concrete bridges indicate that
the effect of the load may be more complicated than the simple
effect of the mass of the vehicle. An experimental investiga-
tion of this phenomena could include an additional objective
which might be more important than the analysis of the effect
of the live load mass. The other problem which could be in-
vestigated in a simllar manner is the wvery important problem
of an upper limit for the amplitude of forced vibration at
resonance. At the onset of this research is was felt that the
damping would limit the maximum impact for the resonance condi-
tion. It has been shown that this is not true for most of the
bridges tested. This problem of the maximum amplitude of
forced vibration, or maximum impact, and the lesser problem of
the effect of the vehicle mass on the natural frequency of the
structure, could be investigated by a study of the forced
vibration of a structure with a large variable speed oscilla-
tor. This oscillator, used in conjunction with a stationary
vehicle on the bridge, would provide some answers to the prob-
lem of the natural frequency of the bridge and vehlicle. 1In
addition, the use of this oscillator with varying amounts of
the oscillatory force, could be used to investigate the prob-
lem of an upper limit for the impact curves, It is felt by
the writer that a form of damping, which is evidently not
viscous, limits the amplitude of the vibratory motlon of the
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structure, notwithstanding the effect of the springing of the
vehlcle which has been disregarded. It is possible that this
damping becomes a function of amplitude after the amplitude of
vibratory motion exceeds a certain value.

The research indicated above is based on the theory that
before the sffect of the various parameters of the vehicle and
the roadway surface are integrated into the problem of impact,
a thorough knowledge of the vibratory action and response of

the structure is desirable.
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APPENDIX

The following tables (Tables 2 to 1) 1list the results of
the experimental tests. The run number, vehicle veloclty, and
the frequency of the bridge vibration at maximum moment are
given in addition to the impact for each run. Each table
represents a serles of tests conducted in one sequence. The
impact 1s shown for each respective vehicle and experimental
section. The location of the vehicle at the time the impact
was evaluated 1s shown by the subscripts. These subscripts
also indicate which part of Vehicle "B", the truck tractor or
trailer, was at that position. The subscripts denote the
following:

a The vehlicle 1s on the outer span (Ll) near Section I.

b The vehicle is on the imner span (L) near Section
II.

c The vehlcle is on the inner span beyond the center
interior support from Section II. It is, therefore,
in a position symmetrical about the center pier with
position b,

e This indicates that the position is with respect to
the truck tractor portion of Vehicle "B",.

by This 1ndicates that the position is with respect to
the traller portion of Vehicle "B".
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Table 2. Impact for simple span concrete stringer bridge at
Section I for Vehicle "A"

Run Veloclty Impact Frequency of bridge
(fps) Ia vibration (cps)
3N-10 1.7 0.140 3.8
3N=-20 28.8 0.070 5.5
3N-30 38.4 0.180 3.4
38-10 13.3 0.152 3.45
35=20 27.8 0.051 2.3-5.0
35=-20 36.2 0.117 2.7
5N-10 13.4 0.04l; 3.7
S5N-20 2.8 0.040 5.0
S5N-30 Uhle7 0.052 3.2
55«10 13.5 0.168 3.5
55-20 25.0 0.098 4.6

SS"BO 3902 0.211 306




133

Table 3. ix:gai 1; Ifggra%grgi?{z: % :ﬁinger bridge at Sections I
DR ¢+ A e+ viboation (cps)
2E=-10 14.15 0.158 0.137 3.3

2E=-20 31.0 0.07 0.1l 5.8

2E-30 42.65 0.02 0.163 3.3

2E=-0 51.1 0.11 0.321 34

5E-10 13.7 0.184 0.085 3.75

S5E=20 32.94 0.004 0.057 6.6

5E-30 400y 0.108  0.149 3.5

SE-}0 58.1 0.152 0.241 3.6

2W=10 16.7 0.142 0.149 3.45

2W-20 27.82 0.0:7 0,032 8.3

2W=30 0.3 0.021 0.074 9.h

5W-10 .55  0.170  0.159 3.85

5W-20 26y 0,001 0.058 6.6

Sw-30 40.6 0.021 0,053 9.25

SW-LL0 49.1 0.073 0.153 3.60
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Table L. Impact for aluminum stringer bridge at Sections II
and IV for Vehicle "aA"

Run Velocity Impact Frequency of bridge
(fps) I, IV, Iv, vibration (cps)

2E-10 5.4 .029 «151 .085 3.6

2E=15 23.98 .081 o 2U8 091 5.25

2E-20 27.6L .0204 .250 059 6.2

ZE‘BO 3“..082 QOLL?Z . 1).[.2 olll 3. l

2E-35 L1.40 .1011 .04l «107 33

2E=10 43.65 «159 109 .112 3.5

SE-].O 1L|.031 0087 0116 0059 30’.{.

5E-15 23.4 179 .123 «122 .9

SE-20 28.58 .05 .186 070 6.3

5E-30 40.55 .15 .098 <113 3.95

SE=10 52.85 .1018 ,1187 113 3.85

2W=-10 12.36 .039 «139 059 2.8

2W=20 25.3 Ohly 215 - 5.5

2W=30 38.88 028  .,132 .165 3.2

2W=35 L47.00 .119 2187 «091 3.55

SW-10 12.76 2065 ,150 .008 2.9

SW-15 18.1 .155 «150 .101 .S

S5W-18 20.8 .088 .217 .098 5.5

5W"20 27 05 .038 ) 151 hadhnd S.O

5W‘25 26 095 0038 .308 handand 509

SW"BO 36010 0052 quZ 0150 L|..0

S5W=35 h3.1 +034  JO4O +160 4.0

SW"LI.O ,.|.3085 [ 111 0023 0135 3.6
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Table 5. Impact for aluminum stringer bridge at Sections I
and III for Vehicle "B"

T Nen T 1ML, viveasion (epe)
2W-10 1,10 .09}  .198 3.3
2W-20 20.3 049  .072 le2
2W-30 35.26 .051  .138 3.3
SW=10 14.98 .100  .110 3.3
5W-12 14.89 <191 .209 3.k
5W-20 25.98 .101  .088 6.0
5W=30 36.2 «169  .102 3.6-8.4
SW-10 37.3 «156  .036 10.0
2E-10 13.142 054  .202 3.0
2E-20 27.5 077  .070 5.3
2E-30 42.3 053 0 Lol
2E-1,0 LS.6 .100  .122 3.5
5E-10 17.05 .050  .179 3.65
5E-20 26.2 .102 L1111 6.25
5E-30 39.3 0 .121 3.8

SE-LI.O L[.9 [ ) 1 . 160 [ 190 3 L) 3
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Table 6. Impact for aluminum stringer bridge at Sections II
and IV for Vehicle "B"

Run Velocity Impact Frequency of bridge
(fps) 11, IVp,e IVy,e vibration (cps)

‘2Wb10 11.79 0 091 .025 2.8
2W-20 21.46 «131 .089 .039 5.5

2W-30 3.5 106 01y 140 3.7

S5W-10 11.59 «030 Oh1  .O42 3.3
5W-20 2h o6 .100 120 .030 5.0
5W-30 35.5 «128 O34 112 3.8
2E-10 11,38 .058 072 .025 3.5
2E-20 2l4«57 +139 146 .039 5.2
2E=-30 3.6 .138 240 140 3.2=T.2
SE-10 11.59 043 . 062 072 2.8
SE=-20 2214l $125 «030 ,038 5.0
S5E-30 33.9 «032 .106 ,088 6.5

SE-10 45.5 «170 o174 069 3.9
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Table 7. Impact for steel stringer bridge at Sections I and
ITI for Vehicle "A"

Run Velocity Impact Frequency of bridge
(fps) I, I1I, vibration (cps)

3N-10 15.3 .092 +008 3.64
3N-20 26.6 «063 «076 6.3
3N-30 U4l.ht 0 0123 3.5
6N-10 1.6 039 .003 3.8

6N=-20 26.6 +015 0 5.9

6N=30 39.8 .040 .003 3.1
6N-40 41.6 0 061 3.7
35-10 13.5 .080 .010 3.33
38-20 26.1 .073 0 5.8
3S=30 39.5 «260 «112 3.3

65-10 12.4 +018 0 3.7
65-20 26.1 .052 0 5.6
65-130 38.0 0 .110 8.6

6S-110 55.5 040 .118 4ol
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Table 8. Impact for steel stringer bridge at Sections II and
IV for Vehicle "A"

Run Velcclty Impact Frequency of bridge
(fps) 1T, IV, vibration (cps)

3N-10 14.85 .030 ,180 3.7
3N-20 27.66 0Oh5 .102 5.1
3N-30 38.95 .075  .1i48 L8
6N-10 13.19 075 140 3.85
6N-20 27.19 .039 - 5.8
6N-30 39.5 .088  .159 3.2
6N-40 51.35 095 .138 el

38-10 13.44 .058 .056 3.33
35-20 26 .y +C75 .092 T
35=30 38,2 .151  .120 3.2

65-10 13.25 021  .125 3.33
65=-20 25.32 .068 «100 6.3
65-30 hl.h 278 168 3445

6S-40  53.3 43 .228 3.45
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Table 9. %?gagzrfgghigggl"gﬁringer bridge at Sections I and
Run Velocity Impact Frequency of bridge
(fps) Io,e Ta,r Je vibration (cps)

3N-10 10,2 0 0 0 2.8

3N-20 2.0 <030 052 +060 5.5

3N-30 33.33 .198 062 «110 3.3

3N-40 Wl 056 .087 145 he2-2.5
6N-10 11.8 048 140 L1LS 2.9

6N=-20 26.5l o049 .oy2  ,058 5.2

6N-30 37.5 «100 021 .238 3.2

6N-40 43.15 020 .062 .253 2.1

35=10 8.51 .0016 O 041 2.9

35-20 2h.22 036 .035 .079 5.2

3S-30 12.85 .151 121 «120 3.1

3S8=40 55.55 123  ,083 ,152 2.5

65-10 7.01 054, .00  .O45 2.2

6S-20 23.6 .031  ,0375 .050 5.0

6S-30 41.2 6 105 .090 3.8

68=10 51.7 059  .120 ,069 2.3
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Table 10, Impact for steel stringer bridge at Sectlons II and
IV for Vehicle "B"

Run Velocity Impact Frequency of
(fps) IIb,e IIb,f Iv'b’e IV‘,D,f brid Zp:%bration
3N-10 15.45  .073  .156  .260 O 3.l
3N-20 26,65 .04  .002 @ ~- - 6.7
3N-30 }5.0 .039 .00 .390  .087 3.6
6N-10 13.69 .038  .106  .,063 ,0L49 2.8
6N-20  25.0 .00  .066 .085 079 5.5
6N-30 37.5 .095 .088 .190 .003 3.6
35-10  12.45 .00 .038 .12z .100 2.9
35-20 26,1 .021  .026 .062  .065 5.8
35-30 40.3 .020 .153 .08 .00 3y
3S-40 55.8 210 ,218 .247 .210 2.5-5.0
6S-10  13.9 062  .103  .050 .062 3.3
65-20 25.4 040  .029 .050 ,050 6.2
6s-30 41.0 .096  .115  .062  ,135 3.4

6S-40 Sh.8 .187 «266 .0L8 .238 2.5




1

Table 1l. Impact for continuous concrete stringer bridge at
Section I for Vehicle "A"

Run Velocity Impact Frequency of bridge
(fps) I, vibration (cps)
2N~10 15.83 .018 3.3
2N-20 28.40 .029 8.0-10,0
2N-30 41.40 .ou8 12.5
5N-10 1h..140 .089 3.5
5N-20 29.00 .020 -
5N-30 41.40 .00 6.}
SN-40 54.00 ' «030 3.3
25-10 16.85 <143 3.5
28=20 28.38 .00 5.5
25-30 440.0 .108 -
55-10 15.9 .058 3.5
58«20 32.02 .035 4«8
55-30 41.40 .105 12.0

SS",.LO 51. ls 0006 803‘12.0
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Table 12. gggiignfgg ;ggt%gﬁggiecgzﬁrete stringer bridge at

Run Velocity Impact Frequency of bridge
(fps) I, vibration (cps)

2N-10 15.0 «131 41.0-9.0

2N-20 26.8 .050 8.0

2N-30 39.4 .00 L5

2N-40 Sl.5 100 Le5-9.1

5N=-10 14.8 .00 }.0-9.0

5N-20 29.6 .00 -

5N-30 42.0 054 3.5

SN-40 55.1 .020 lt«5-9.0

25-10 15.h .109 3.33

25-20 28.1 .051 _—

25-30 38.5 .00 TeT=Te3

2S-440 49.6 049 11.5-9.0

5S=10 15.75 «100 3633

58=-20 28.0 +069 8.0

5S=30 41.0 .038 3.8

58=110 50.0 .00 ly«5-9.,0
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Table 13. Impact for continuous concrete stringer bridge at
Section III for Vehicle "A"

Run Velocity. Impact Frequency of bridge
(fps) III; IIT, vibration (cps)

2N-10 15 .10 .131 4.0-3.33

2N-20 25.56 .00  ,056 10.0

2N=-30 39.1 .119 .078 12.0-17.0

2N-40 51.6 .10 .00 9.0-16.7

5N=-10 1y .60 OLb  .091 3.45

5N-20 28.80 - .00 --

5N-30 41,00 113,091 3.8-4.2

5N-40 51.40 .160 .00 L..5

28-10 16.3 .10y  .131 -

25-20 2h.3 -- 043 6el=11.7

258-30 39.4 .00 .00 12.0

25-140 50.L. 122 .10 h.5-9,0

55-10 -- .- - -

55-20 30.3 .00 .00 -

55=-30 19.90 .048  .011 b 0=}.5

Ss-h.o u-9068 0071 0011 bkl




1y

Table 1lL. Impact for continuous concrete stringer bridge at
Section IV for Vehicle "A"

S ¢4 A Ty vivsasion (cps)
2N-10 13.20 .00 .02 3.6
2N-20 241,20 - - 3.65
2N-30 42,0 395 1,08 3.75
2N-}0 55.0 .51 .50 l..8-8.0
5N-10 12.9 107 .118 3.7
5N-20 28.8 .088 .093 7.9
5N-30 40.6 .588 «5l1 3.7
5N=110 5.0 118 .33 7.8
2s-10 16.5 .02 - 3.55
28-20 26.1 - - 3.6
2S=-30 39.0 1460 o267 3.7
2S=40 19.6 .29 243 7.8
58-10 17.10 079 .80 3.6
55-20 29.20 .049 - 8.3
55-30 39.4 559 437 37

538=40 49.6 175 .032 7.2
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